Main Page

From PyMOLWiki
Revision as of 13:20, 20 September 2017 by Speleo3 (talk | contribs) (PyMOL v2.0)
Jump to navigation Jump to search
hosted by SBGridlogo2.jpg
Welcome to the PyMOL Wiki!
The community-run support site for the PyMOL molecular viewer.
To request a new account, email SBGrid at: accounts (@) sbgrid dot org
Quick Links
Tutorials Table of Contents Commands
Script Library Plugins FAQ
Gallery | Covers PyMOL Cheat Sheet (PDF) Getting Help
News & Updates
Official Release PyMOL v2.0 has been released on September 20, 2017.
Plugin Update MOLE 2.5 is an updated version of channel analysis software in PyMOL
Official Release PyMOL v1.8.6 has been released on March 9, 2017.
Official Release PyMOL v1.8.4 has been released on October 4, 2016.
New Script dssr_block is a wrapper for DSSR (3dna) and creates block-shaped nucleic acid cartoons
New Plugin LiSiCA is a new plugin for 2D and 3D ligand based virtual screening using a fast maximum clique algorithm.
Official Release PyMOL v1.8.0 has been released on Nov 18, 2015.
PyMOL Open-Source Fellowship Schrödinger is now accepting applications for the PyMOL Open-Source Fellowship program! Details on http://pymol.org/fellowship
Official Release PyMOL, AxPyMOL, and JyMOL v1.7.6 have all been released on May 4, 2015.
New Plugin PyANM is a new plugin for easier Anisotropic Network Model (ANM) building and visualising in PyMOL.
New Plugin Bondpack is a collection of PyMOL plugins for easy visualization of atomic bonds.
New Plugin MOLE 2.0 is a new plugin for rapid analysis of biomacromolecular channels in PyMOL.
3D using Geforce PyMOL can now be visualized in 3D using Nvidia GeForce video cards (series 400+) with 120Hz monitors and Nvidia 3D Vision, this was previously only possible with Quadro video cards.
Older News See Older News.
Did you know...

Dehydron

Type PyMOL Plugin
Download plugins/dehydron.py
Author(s) Osvaldo Martin
License MIT
This code has been put under version control in the project Pymol-script-repo

Introduction

A dehydron is a protein backbone hydrogen bond incompletely shielded from water attack. A desolvated hydrogen bond is energetically more favourable than one exposed to the solvent and hence dehydrons are sticky , since they promote the removal of surrounding water through protein associations or ligand binding.

Dehydrons are less conserved than other structural motifs, hence identification of dehydrons could help to increase specificity during the rational drug design process. Certain proteins are enriched in dehydrons such as membrane proteins, toxic proteins and proteins that have a strong tendency to aggregate. Dehydrons have been invoked to explain biological processes above the molecular level such as the dosage imbalance effect in duplicated genes and the high connectivity of the protein interactomes of higher organisms.

A putative dehydron can be detected by ..→

A Random PyMOL-generated Cover. See Covers.