BbPlane: Difference between revisions
Jump to navigation
Jump to search
(Created page with 'This script will draw a CGO plane between the backbone atoms of two neighboring residues. This is to show the planarity of the atoms. The image style this is meant to represent…') |
No edit summary |
||
Line 1: | Line 1: | ||
This script will draw a CGO plane between the backbone atoms of two neighboring residues. This is to show the planarity of the atoms. The image style this is meant to represent can be found many places, like "Introduction to Protein Structure" by Branden and Tooze (2nd ed. pp. 8). | This script will draw a CGO plane between the backbone atoms of two neighboring residues. This is to show the planarity of the atoms. The image style this is meant to represent can be found many places, like "Introduction to Protein Structure" by Branden and Tooze (2nd ed. pp. 8). | ||
<gallery> | <gallery perrow=3 widths=300 heights=300> | ||
Image:bbPlane3.png|Close up of planar atoms | |||
Image:bbPlane1.png|A few more | |||
Image:bbPlane2.png|Global view | |||
</gallery> | </gallery> | ||
Line 111: | Line 114: | ||
cmd.extend("bbPlane", bbPlane) | cmd.extend("bbPlane", bbPlane) | ||
</source> | </source> | ||
[[Category:Script_Library]] | |||
[[Category:Math_Scripts]] | |||
[[Category:Structural_Biology_Scripts]] |
Revision as of 13:37, 28 June 2010
This script will draw a CGO plane between the backbone atoms of two neighboring residues. This is to show the planarity of the atoms. The image style this is meant to represent can be found many places, like "Introduction to Protein Structure" by Branden and Tooze (2nd ed. pp. 8).
Examples
# download the source and save as bbPlane.py
run bbPlane.py
fetch 1cll
# make planes for residues 4-9
bbPlane i. 4-10
The Source
#
# -- bbPLane.py - draws a CGO plane across the backbone atoms of
# neighboring amino acids
#
# Author: Jason Vertrees, 06/2010
# Copyright (C) Schrodinger
# Open Source License: MIT
#
from pymol.cgo import * # get constants
from pymol import cmd, stored
def bbPlane(objSel, r=1.0, g=1.0, b=1.0, transp=0.0):
"""
Draws a plane across the backbone for a selection
PARAMS
objSel,
(object or selection) protein object or selection
r, g, b, transp
(float) red, blue, green and transparency, components (0.0--1.0)
RETURNS
A new object representing the planes
NOTES
* You need to pass in an object or selection with at least two
amino acids. The plane spans CA_i, O_i, N-H_(i+1), and CA_(i+1)
* Avoid two-sided lighting until I rearrange the vertices
"""
# format input
r, g, b, transp = float(r), float(g), float(b), float(transp)
stored.AAs = []
# need hydrogens
cmd.h_add(objSel)
# get the list of residue ids
cmd.iterate( "(" + objSel + ") and n. CA" , "stored.AAs.append(resi)")
# need at least two amino acids
if len(stored.AAs) <= 1:
print "ERROR: Please provide at least two amino acids, the alpha-carbon on the 2nd is needed."
return
# prepare the cgo
obj = [
BEGIN, TRIANGLES,
COLOR, r, g, b,
]
for res in range(0, len(stored.AAs)-1):
curIdx, nextIdx = str(stored.AAs[res]), str(stored.AAs[res+1])
# ignore prolines for now
if cmd.count_atoms( "i. %s and resn PRO" % nextIdx ):
continue
# if the data are incomplete for any residues, ignore
if cmd.count_atoms( "i. " + curIdx + " and n. CA") == 0 or \
cmd.count_atoms( "i. " + curIdx + " and n. O") == 0 or \
cmd.count_atoms("((i. " + nextIdx + " and n. N) extend 1) and (e. H)")==0 or \
cmd.count_atoms("i. " + nextIdx + " and n. CA")== 0:
continue
# populate the position array
pos = [ cmd.get_atom_coords( "i. " + curIdx + " and n. CA"),
cmd.get_atom_coords( "i. " + curIdx + " and n. O"),
cmd.get_atom_coords( "((i. " + nextIdx + " and n. N) extend 1) and (e. H)"),
cmd.get_atom_coords( "i. " + nextIdx + " and n. CA")
]
# fill in the vertex data for the triangles;
# two-sided lighting is an issue
obj.extend( [
VERTEX, pos[0][0], pos[0][1], pos[0][2],
VERTEX, pos[1][0], pos[1][1], pos[1][2],
VERTEX, pos[2][0], pos[2][1], pos[2][2],
VERTEX, pos[1][0], pos[1][1], pos[1][2],
VERTEX, pos[2][0], pos[2][1], pos[2][2],
VERTEX, pos[3][0], pos[3][1], pos[3][2],
])
# finish the CGO
obj.append(END)
# update the UI
newName = cmd.get_unused_name("backbonePlane")
cmd.load_cgo(obj, newName)
cmd.set("cgo_transparency", transp, newName)
cmd.extend("bbPlane", bbPlane)