ColorByRMSD: Difference between revisions
Jump to navigation
Jump to search
m (→Examples) |
(First Release) |
||
Line 1: | Line 1: | ||
== Introduction == | == Introduction == | ||
This script allows you to color two structures by Root Mean Square Deviation (RMSD), as calculated by PyMol's internal [[Rms_Cur]] command. The pairwise, C-alpha, RMSD is calculated only between those residues which are first used by PyMol's internal [[Super]] command to superpose the two structures. The RMSD values are stored as B-factors of these residues, which are colored by a ''rainbow'' color spectrum, with blue specifying the minimum pairwise RMSD and red indicating the maximum. Residues ''NOT'' used by [[Super]] for RMSD calculation are colored ''white''. | |||
== Code == | == Code == | ||
Please use this script with the option '''doPretty=T''' to gain the most benefit. Additionally, setting [[Cartoon]] representation to ''loop'', with the command: <source lang="python"> cartoon loop </script> may help ease comparisons. Do keep in mind, all original B-factors values are overwritten! | |||
==== Examples ==== | ==== Examples ==== | ||
<source lang="python"> | <source lang="python"> | ||
# example #1 | # example #1 | ||
colorByRMSD 1cbs, 1hmt, doAlign= | colorByRMSD 1cbs, 1hmt, doAlign=T, doPretty=T | ||
# example #2 | # example #2 | ||
colorByRMSD 1eaz, 1fao, doAlign= | colorByRMSD 1eaz, 1fao, doAlign=T, doPretty=T | ||
</source> | </source> | ||
Line 28: | Line 24: | ||
Program : ColorByRMSD | Program : ColorByRMSD | ||
Date : July 2009 | Date : July 2009 | ||
Version : 0.0 | Version : 0.1.0 (first release!) | ||
Mail : firstname.lastname@umassmed.edu | Mail : firstname.lastname@umassmed.edu | ||
Line 47: | Line 43: | ||
return p[0].upper() == "T" | return p[0].upper() == "T" | ||
# The main function that assigns | # The main function that assigns current RMSD as the new B-factor | ||
def rmsUpdateB(objA, alnAri, objB, alnBri): | def rmsUpdateB(objA, alnAri, objB, alnBri): | ||
for x in range(len(alnAri)): | for x in range(len(alnAri)): | ||
s1 = objA + " and n. CA and i. " + alnAri[x] | s1 = objA + " and n. CA and i. " + alnAri[x] | ||
Line 61: | Line 56: | ||
def colorByRMSD(objSel1, objSel2, doAlign="True", doPretty=None): | def colorByRMSD(objSel1, objSel2, doAlign="True", doPretty=None): | ||
""" | """ | ||
colorByRMSD -- align two structures and show the structural deviations in | colorByRMSD -- align two structures and show the structural deviations | ||
in color to more easily see variable regions. | |||
PARAMS | PARAMS | ||
Line 73: | Line 68: | ||
doAlign (boolean, either True or False) | doAlign (boolean, either True or False) | ||
Should this script align your proteins or just leave them | Should this script align your proteins or just leave them as is? | ||
If doAlign=True then your original proteins are aligned. | |||
If False, then they are not. Regardless, the B-factors are changed. | |||
DEFAULT: True | DEFAULT: True | ||
doPretty (boolean, either True or False) | doPretty (boolean, either True or False) | ||
If doPretty=True then a simple representation is created to | If doPretty=True then a simple representation is created to | ||
highlight the differences. If False, then no changes are made. | |||
DEFAULT: False | |||
DEFAULT: | |||
RETURNS | RETURNS | ||
Line 89: | Line 82: | ||
SIDE-EFFECTS | SIDE-EFFECTS | ||
Modifies the B-factor columns in your original structures. | |||
""" | """ | ||
# create backup copies; names starting with | # First create backup copies; names starting with __ (underscores) are | ||
# hidden by PyMOL | # normally hidden by PyMOL | ||
tObj1, tObj2, aln = "__tempObj1", "__tempObj2", "__aln" | tObj1, tObj2, aln = "__tempObj1", "__tempObj2", "__aln" | ||
Line 100: | Line 93: | ||
cmd.create( tObj1, objSel1 ) | cmd.create( tObj1, objSel1 ) | ||
cmd.create( tObj2, objSel2 ) | cmd.create( tObj2, objSel2 ) | ||
cmd.super( tObj1, tObj2, object=aln ) | cmd.super( tObj1, tObj2, object=aln ) | ||
cmd.matrix_copy(tObj1, objSel1) | cmd.matrix_copy(tObj1, objSel1) | ||
else: | else: | ||
Line 108: | Line 99: | ||
cmd.create( tObj1, objSel1 ) | cmd.create( tObj1, objSel1 ) | ||
cmd.create( tObj2, objSel2 ) | cmd.create( tObj2, objSel2 ) | ||
cmd.super( tObj1, tObj2, object=aln ) | cmd.super( tObj1, tObj2, object=aln ) | ||
# | # Modify the B-factor columns of the original objects, | ||
# in order to identify the residues NOT used for alignment, later on | |||
# | |||
cmd.alter( objSel1 + " or " + objSel2, "b=-10") | cmd.alter( objSel1 + " or " + objSel2, "b=-10") | ||
cmd.alter( tObj1 + " or " + tObj2, "chain='A'") | cmd.alter( tObj1 + " or " + tObj2, "chain='A'") | ||
cmd.alter( tObj1 + " or " + tObj2, "segi='A'") | cmd.alter( tObj1 + " or " + tObj2, "segi='A'") | ||
# | |||
# Update pymol internal representations; one of these should do the trick | |||
cmd.refresh(); cmd.rebuild(); cmd.sort(tObj1); cmd.sort(tObj2) | cmd.refresh(); cmd.rebuild(); cmd.sort(tObj1); cmd.sort(tObj2) | ||
# | # Create lists for storage | ||
stored.alnAres, stored.alnBres = [], [] | stored.alnAres, stored.alnBres = [], [] | ||
# Get the residue identifiers from the alignment object "aln" | |||
cmd.iterate(tObj1 + " and n. CA and " + aln, "stored.alnAres.append(resi)") | cmd.iterate(tObj1 + " and n. CA and " + aln, "stored.alnAres.append(resi)") | ||
cmd.iterate(tObj2 + " and n. CA and " + aln, "stored.alnBres.append(resi)") | cmd.iterate(tObj2 + " and n. CA and " + aln, "stored.alnBres.append(resi)") | ||
# | # Change the B-factors for EACH object | ||
rmsUpdateB(tObj1,stored.alnAres,tObj2,stored.alnBres) | rmsUpdateB(tObj1,stored.alnAres,tObj2,stored.alnBres) | ||
# Store the NEW | # Store the NEW B-factors | ||
stored.alnAnb, stored.alnBnb = [], [] | stored.alnAnb, stored.alnBnb = [], [] | ||
cmd.iterate(tObj1 + " and n. CA and " + aln, "stored.alnAnb.append(b)" ) | cmd.iterate(tObj1 + " and n. CA and " + aln, "stored.alnAnb.append(b)" ) | ||
cmd.iterate(tObj2 + " and n. CA and " + aln, "stored.alnBnb.append(b)" ) | cmd.iterate(tObj2 + " and n. CA and " + aln, "stored.alnBnb.append(b)" ) | ||
# Get rid of all intermediate objects | # Get rid of all intermediate objects and clean up | ||
cmd.delete(tObj1) | cmd.delete(tObj1) | ||
cmd.delete(tObj2) | cmd.delete(tObj2) | ||
cmd.delete(aln) | cmd.delete(aln) | ||
# Assign the just stored NEW | # Assign the just stored NEW B-factors to the original objects | ||
for x in range(len(stored.alnAres)): | for x in range(len(stored.alnAres)): | ||
cmd.alter(objSel1 + " and n. CA and i. " + str(stored.alnAres[x]), "b = " + str(stored.alnAnb[x])) | cmd.alter(objSel1 + " and n. CA and i. " + str(stored.alnAres[x]), "b = " + str(stored.alnAnb[x])) | ||
Line 156: | Line 144: | ||
# Select the residues not used for alignment; they still have their B-factors as "-10" | # Select the residues not used for alignment; they still have their B-factors as "-10" | ||
cmd.select("notUsedForAln", "b < 0") | cmd.select("notUsedForAln", "b < 0") | ||
# White-wash the residues not used for alignment | # White-wash the residues not used for alignment | ||
cmd.color("white", "notUsedForAln") | cmd.color("white", "notUsedForAln") | ||
# Color the residues used for alignment according to their B-factors (RMSD values) | # Color the residues used for alignment according to their B-factors (RMSD values) | ||
cmd.spectrum("b", 'rainbow', "((" + objSel1 + " and n. CA) or (n. CA and " + objSel2 +" )) and not notUsedForAln") | cmd.spectrum("b", 'rainbow', "((" + objSel1 + " and n. CA) or (n. CA and " + objSel2 +" )) and not notUsedForAln") | ||
print "\nColorByRMSD completed successfully. | # Delete the selection of atoms not used for alignment | ||
# If you would like to keep this selection intact, | |||
# just comment "cmd.delete" line and | |||
# uncomment the "cmd.disable" line below. | |||
cmd.delete("notUsedForAln") | |||
# cmd.disable("notUsedForAln") | |||
print "\nColorByRMSD completed successfully.\nObjects are now colored by C-alpha RMS deviation.\n" | |||
cmd.extend("colorByRMSD", colorByRMSD) | cmd.extend("colorByRMSD", colorByRMSD) |
Revision as of 20:55, 16 July 2009
Introduction
This script allows you to color two structures by Root Mean Square Deviation (RMSD), as calculated by PyMol's internal Rms_Cur command. The pairwise, C-alpha, RMSD is calculated only between those residues which are first used by PyMol's internal Super command to superpose the two structures. The RMSD values are stored as B-factors of these residues, which are colored by a rainbow color spectrum, with blue specifying the minimum pairwise RMSD and red indicating the maximum. Residues NOT used by Super for RMSD calculation are colored white.
Code
Please use this script with the option doPretty=T to gain the most benefit. Additionally, setting Cartoon representation to loop, with the command:
cartoon loop </script> may help ease comparisons. Do keep in mind, all original B-factors values are overwritten!
==== Examples ====
<source lang="python">
# example #1
colorByRMSD 1cbs, 1hmt, doAlign=T, doPretty=T
# example #2
colorByRMSD 1eaz, 1fao, doAlign=T, doPretty=T
"""
--- ColorByRMSD: RMSD based coloring ---
Authors : Shivender Shandilya; Jason Vertrees
Program : ColorByRMSD
Date : July 2009
Version : 0.1.0 (first release!)
Mail : firstname.lastname@umassmed.edu
Keywords: color rms rmsd colorbyrms colorbyrmsd
----------------------------------------------------------------------
Reference:
This email from Warren - http://www.mail-archive.com/pymol-users@lists.sourceforge.net/msg07078.html
Literature:
DeLano, W.L. The PyMOL Molecular Graphics System (2002) DeLano Scientific, San Carlos, CA, USA. http://www.pymol.org
----------------------------------------------------------------------
"""
import pymol
import cmd
from pymol import stored
def strTrue(p):
return p[0].upper() == "T"
# The main function that assigns current RMSD as the new B-factor
def rmsUpdateB(objA, alnAri, objB, alnBri):
for x in range(len(alnAri)):
s1 = objA + " and n. CA and i. " + alnAri[x]
s2 = objB + " and n. CA and i. " + alnBri[x]
rmsd = cmd.rms_cur(s1, s2, matchmaker=4)
cmd.alter( s1, "b = " + str(rmsd))
cmd.alter( s2, "b = " + str(rmsd))
cmd.sort(objA); cmd.sort(objB)
def colorByRMSD(objSel1, objSel2, doAlign="True", doPretty=None):
"""
colorByRMSD -- align two structures and show the structural deviations
in color to more easily see variable regions.
PARAMS
objSel1 (valid PyMOL object or selection)
The first object to align.
objSel2 (valid PyMOL object or selection)
The second object to align
doAlign (boolean, either True or False)
Should this script align your proteins or just leave them as is?
If doAlign=True then your original proteins are aligned.
If False, then they are not. Regardless, the B-factors are changed.
DEFAULT: True
doPretty (boolean, either True or False)
If doPretty=True then a simple representation is created to
highlight the differences. If False, then no changes are made.
DEFAULT: False
RETURNS
None.
SIDE-EFFECTS
Modifies the B-factor columns in your original structures.
"""
# First create backup copies; names starting with __ (underscores) are
# normally hidden by PyMOL
tObj1, tObj2, aln = "__tempObj1", "__tempObj2", "__aln"
if strTrue(doAlign):
# perform the alignment
cmd.create( tObj1, objSel1 )
cmd.create( tObj2, objSel2 )
cmd.super( tObj1, tObj2, object=aln )
cmd.matrix_copy(tObj1, objSel1)
else:
# perform the alignment
cmd.create( tObj1, objSel1 )
cmd.create( tObj2, objSel2 )
cmd.super( tObj1, tObj2, object=aln )
# Modify the B-factor columns of the original objects,
# in order to identify the residues NOT used for alignment, later on
cmd.alter( objSel1 + " or " + objSel2, "b=-10")
cmd.alter( tObj1 + " or " + tObj2, "chain='A'")
cmd.alter( tObj1 + " or " + tObj2, "segi='A'")
# Update pymol internal representations; one of these should do the trick
cmd.refresh(); cmd.rebuild(); cmd.sort(tObj1); cmd.sort(tObj2)
# Create lists for storage
stored.alnAres, stored.alnBres = [], []
# Get the residue identifiers from the alignment object "aln"
cmd.iterate(tObj1 + " and n. CA and " + aln, "stored.alnAres.append(resi)")
cmd.iterate(tObj2 + " and n. CA and " + aln, "stored.alnBres.append(resi)")
# Change the B-factors for EACH object
rmsUpdateB(tObj1,stored.alnAres,tObj2,stored.alnBres)
# Store the NEW B-factors
stored.alnAnb, stored.alnBnb = [], []
cmd.iterate(tObj1 + " and n. CA and " + aln, "stored.alnAnb.append(b)" )
cmd.iterate(tObj2 + " and n. CA and " + aln, "stored.alnBnb.append(b)" )
# Get rid of all intermediate objects and clean up
cmd.delete(tObj1)
cmd.delete(tObj2)
cmd.delete(aln)
# Assign the just stored NEW B-factors to the original objects
for x in range(len(stored.alnAres)):
cmd.alter(objSel1 + " and n. CA and i. " + str(stored.alnAres[x]), "b = " + str(stored.alnAnb[x]))
for x in range(len(stored.alnBres)):
cmd.alter(objSel2 + " and n. CA and i. " + str(stored.alnBres[x]), "b = " + str(stored.alnBnb[x]))
cmd.rebuild(); cmd.refresh(); cmd.sort(objSel1); cmd.sort(objSel2)
if doPretty!=None:
# Showcase what we did
cmd.orient()
cmd.hide("all")
cmd.show_as("cartoon", objSel1 + " or " + objSel2)
# Select the residues not used for alignment; they still have their B-factors as "-10"
cmd.select("notUsedForAln", "b < 0")
# White-wash the residues not used for alignment
cmd.color("white", "notUsedForAln")
# Color the residues used for alignment according to their B-factors (RMSD values)
cmd.spectrum("b", 'rainbow', "((" + objSel1 + " and n. CA) or (n. CA and " + objSel2 +" )) and not notUsedForAln")
# Delete the selection of atoms not used for alignment
# If you would like to keep this selection intact,
# just comment "cmd.delete" line and
# uncomment the "cmd.disable" line below.
cmd.delete("notUsedForAln")
# cmd.disable("notUsedForAln")
print "\nColorByRMSD completed successfully.\nObjects are now colored by C-alpha RMS deviation.\n"
cmd.extend("colorByRMSD", colorByRMSD)