PPIIMoL: Difference between revisions

From PyMOLWiki
Jump to navigation Jump to search
 
(32 intermediate revisions by the same user not shown)
Line 1: Line 1:
= PPIIMoL =
= PPIIMoL =
<span title="Small PPII helix icon">
[[File:PPIIMoL_icon.png|right|120px|alt=Small PPII helix icon|link=]]
</span>


'''PPIIMoL''' is a Python module for [[PyMOL]] that automates the detection of polyproline II (PPII) helices in proteins. It identifies PPII-like φ/ψ angle patterns, screens for plausible non-canonical Cα–H···O=C contacts, and provides one-click visualization and export.
'''PPIIMoL''' is a Python module for [[PyMOL]] that automates the detection of polyproline II (PPII) helices in proteins. It identifies PPII-like φ/ψ angle patterns, screens for plausible non-canonical Cα–H···O=C contacts, and provides one-click visualization and export.
Line 48: Line 52:


Results are written to a date-stamped folder; selections/objects are created in the PyMOL session and colored according to the chosen scheme.
Results are written to a date-stamped folder; selections/objects are created in the PyMOL session and colored according to the chosen scheme.
=== GUI snapshot ===
[[File:PPIIMoL_GUI.png|thumb|left|800px|alt=PyMOL window with the PPIIMoL pane and a success dialog after detecting PPII segments.|PPIIMoL graphical interface inside PyMOL. Main actions: Load PDB, Detect PPII, Scan Cα–H···O=C, Style/Colors, Export.]]
<div style="clear:both;"></div>
=== Examples ===
<gallery widths=520 heights=350 perrow=2>
File:PPIIMoL_segments_1LNZ.png|Detected PPII segments colored by selection (example structure).
File:PPIIMoL_distances_1LNZ.png|Distances and Cα–H···O=C angle labels between neighboring PPII segments.
</gallery>


== Example (command line, optional) ==
== Example (command line, optional) ==
Line 64: Line 78:
Below are reference figures illustrating PPII bundle organization and residue patterns, reproduced with permission from Segura Rodríguez & Laurents (2024).
Below are reference figures illustrating PPII bundle organization and residue patterns, reproduced with permission from Segura Rodríguez & Laurents (2024).


<gallery widths=500 heights=380 perrow=2>
<!-- Fila 1: Fig. 1 y Fig. 8 -->
File:PPIIMoL Fig1.jpg|Figure 1. Overview of polyproline motifs.<br>Reproduced with permission from Segura Rodríguez & Laurents (2024).
<gallery widths=480 heights=640 perrow=2> <!-- añade mode=packed si tu wiki lo soporta -->
File:PPIIMoL Fig2.jpg|Figure 2. Snow flea antifreeze protein (HhAFP): six PPII helices in two layers, stabilized by disulfides and predominantly antiparallel.<br>Reproduced with permission from Segura Rodríguez & Laurents (2024).
File:PPIIMoL Fig1.jpg|alt=Four panels showing polyproline motifs and packing diagrams.|'''Figure 1.''' Overview of polyproline motifs.<br><small>Reproduced with permission from Segura Rodríguez & Laurents (2024).</small>
File:PPIIMoL Fig3.jpg|Figure 3. Granisotoma rainieri antifreeze protein (GrAFP): nine-helix PPII bundle arranged in two layers.<br>Reproduced with permission from Segura Rodríguez & Laurents (2024).
File:PPIIMoL Fig8.jpg|alt=Pie charts summarizing glycine content and flanking residues across PPII bundles.|'''Figure 8. Quantitative trends:'''<br>(A) Glycine content per PPII helix increases with number of neighbors.<br>(B) Flanking segments enriched in small polar/turn-forming residues; cationic residues often near C-termini.<br><small>Reproduced with permission from Segura Rodríguez & Laurents (2024).</small>
File:PPIIMoL Fig4.jpg|Figure 4. Obg GTPase PPII domain: six PPII helices in two layers connected by variable segments.<br>Reproduced with permission from Segura Rodríguez & Laurents (2024).
File:PPIIMoL Fig5.jpg|Figure 5. Carboxylases: compact bundles of short PPII helices; one helix surrounded by six neighbors; bundle largely buried.<br>Reproduced with permission from Segura Rodríguez & Laurents (2024).
File:PPIIMoL Fig6.jpg|Figure 6. Bacteriophage S16 tail fiber tip (gp38): ten PPII helices; two fully glycine and fully surrounded; variable loops control host recognition.<br>Reproduced with permission from Segura Rodríguez & Laurents (2024).
File:PPIIMoL Fig7.jpg|Figure 7. Human ALK extracellular glycine-rich domain: fourteen PPII helices; three nearly all-Gly; connectors range from short turns to longer elements.<br>Reproduced with permission from Segura Rodríguez & Laurents (2024).
</gallery>
</gallery>


[[File:PPIIMoL Fig8.jpg|thumb|600px|Figure 8. Quantitative trends:<br>(A) Glycine content per PPII helix increases with number of neighbors.<br>(B) Flanking segments enriched in small polar/turn-forming residues; cationic residues often near C-termini.<br>Reproduced with permission from Segura Rodríguez & Laurents (2024).]]
<!-- Filas siguientes: Fig. 2–7 -->
<gallery widths=500 heights=340 perrow=2> <!-- añade mode=packed si tu wiki lo soporta -->
File:PPIIMoL Fig2.jpg|alt=HhAFP with six PPII helices arranged in two antiparallel layers and disulfides.|'''Figure 2.''' Snow flea antifreeze protein (HhAFP): six PPII helices in two layers, stabilized by disulfides and predominantly antiparallel.<br><small>Reproduced with permission from Segura Rodríguez & Laurents (2024).</small>
File:PPIIMoL Fig3.jpg|alt=GrAFP nine-helix PPII bundle in two layers.|'''Figure 3.''' Granisotoma rainieri antifreeze protein (GrAFP): nine-helix PPII bundle arranged in two layers.<br><small>Reproduced with permission from Segura Rodríguez & Laurents (2024).</small>
File:PPIIMoL Fig4.jpg|alt=Obg GTPase domain with six PPII helices connected by variable segments.|'''Figure 4.''' Obg GTPase PPII domain: six PPII helices in two layers connected by variable segments.<br><small>Reproduced with permission from Segura Rodríguez & Laurents (2024).</small>
File:PPIIMoL Fig5.jpg|alt=Carboxylases forming compact bundles of short PPII helices.|'''Figure 5.''' Carboxylases: compact bundles of short PPII helices; one helix surrounded by six neighbors; bundle largely buried.<br><small>Reproduced with permission from Segura Rodríguez & Laurents (2024).</small>
File:PPIIMoL Fig6.jpg|alt=Bacteriophage S16 tail fiber tip with ten PPII helices and variable loops.|'''Figure 6.''' Bacteriophage S16 tail fiber tip (gp38): ten PPII helices; two fully glycine and fully surrounded; variable loops control host recognition.<br><small>Reproduced with permission from Segura Rodríguez & Laurents (2024).</small>
File:PPIIMoL Fig7.jpg|alt=Human ALK extracellular glycine-rich domain with fourteen PPII helices.|'''Figure 7.''' Human ALK extracellular glycine-rich domain: fourteen PPII helices; three nearly all-Gly; connectors range from short turns to longer elements.<br><small>Reproduced with permission from Segura Rodríguez & Laurents (2024).</small>
</gallery>


== GUI buttons ==
== GUI buttons ==
Line 89: Line 107:
* Too many contacts → Tighten cutoffs in Scan Cα–H···O=C.   
* Too many contacts → Tighten cutoffs in Scan Cα–H···O=C.   
* CSV/PDB not written → Verify write permissions.   
* CSV/PDB not written → Verify write permissions.   
* Emojis not visible → Cosmetic only.
* Emojis not visible → Cosmetic only.
 
== Compatibility ==
* PyMOL: 2.x (Tkinter required for the GUI)
* OS: Windows / Linux / macOS
* Python: 3.x
* Notes: requires complete backbone atoms to compute φ/ψ; add hydrogens to enable geometric screening.
 
== Support ==
Found a bug or have a feature request? → [https://github.com/silviaenma/PPIIMoL/issues Open an issue on GitHub].


== How to cite ==
== How to cite ==
Line 98: Line 125:


'''Reference article'''   
'''Reference article'''   
Segura Rodríguez, C. M., & Laurents, D. V. (2024). Architectonic principles of polyproline II helix bundle protein domains. ''Archives of Biochemistry and Biophysics, 741'', 109981. https://doi.org/10.1016/j.abb.2024.109981
Segura Rodríguez, C. M., & Laurents, D. V. (2024). Architectonic principles of polyproline II helix bundle protein domains. ''Archives of Biochemistry and Biophysics, 741'', 109981. [https://doi.org/10.1016/j.abb.2024.109981 DOI]


== Repository ==
== Repository ==
GitHub: [https://github.com/silviaenma/PPIIMoL https://github.com/silviaenma/PPIIMoL]
[https://github.com/silviaenma/PPIIMoL PPIIMoL on GitHub]


== License ==
== License ==
PPIIMoL is released under the GNU GPLv3.
PPIIMoL is released under the [https://www.gnu.org/licenses/gpl-3.0.en.html GNU GPLv3].
 
 


[[Category:Plugins]]
[[Category:Plugins]]
[[Category:Structure Analysis]]

Latest revision as of 03:16, 19 August 2025

PPIIMoL

Small PPII helix icon

PPIIMoL is a Python module for PyMOL that automates the detection of polyproline II (PPII) helices in proteins. It identifies PPII-like φ/ψ angle patterns, screens for plausible non-canonical Cα–H···O=C contacts, and provides one-click visualization and export.

This tool was developed as part of a Bachelor's Thesis in Computer Engineering in collaboration with the Protein Structure, Dynamics and Interactions by NMR Group at the Instituto de Química-Física “Blas Cabrera” (IQF-CSIC). The module’s design and validation take as a primary reference the data and architectonic principles reported by Segura Rodríguez & Laurents (2024) (see How to cite).

Scientific background

Polyproline II (PPII) helices are extended, left-handed motifs (≈3 residues/turn) typically enriched in glycine- and proline-rich domains. Although common in several glycine-rich bundles, they are often unannotated in PDB files. PPIIMoL automates their detection directly in PyMOL to improve speed and reproducibility.

Features

  • 🔍 Automatic detection of PPII segments via phi/psi angle analysis.
  • 🧬 Identification of Cα-H···O=C interactions relevant to structural stability.
  • 📊 CSV export of detected segments and interactions.
  • 🎨 Direct visualization in PyMOL with customizable color codes.
  • 🖱️ Simple Tkinter-based GUI — no commands required; all actions are accessible via buttons.

Requirements

  • PyMOL 2.x or newer.
  • Python with Tkinter enabled (for the GUI).

Installation

Option A — Single-file download (simplest)

  1. Download `PPIIMoL.py` from the repository (see Repository below).
  2. In PyMOL:
run /full/path/to/PPIIMoL.py

Option B — Clone the repository

git clone https://github.com/silviaenma/PPIIMoL.git

Then in PyMOL:

run PPIIMoL/PPIIMoL.py

Optional: install as a plugin In PyMOL: Plugin → Plugin Manager → Install New Plugin → select `PPIIMoL.py` (or the whole folder) → restart PyMOL.

Usage (GUI)

Once loaded, PPIIMoL opens a Tkinter window with buttons to:

  • Load PDB (or use an already-loaded object)
  • Detect PPII (scan φ/ψ windows and list segments)
  • Scan Cα–H···O=C (optional geometric screening)
  • Style / Colors (apply the chosen palette)
  • Export (CSV reports; optional per-segment PDBs)

Results are written to a date-stamped folder; selections/objects are created in the PyMOL session and colored according to the chosen scheme.

GUI snapshot

PyMOL window with the PPIIMoL pane and a success dialog after detecting PPII segments.
PPIIMoL graphical interface inside PyMOL. Main actions: Load PDB, Detect PPII, Scan Cα–H···O=C, Style/Colors, Export.

Examples

Example (command line, optional)

# Load the module
run /full/path/to/PPIIMoL.py
# or
run PPIIMoL/PPIIMoL.py

# Load a structure and trigger detection
fetch 3bog, async=0
ppii_detect()

Reference figures

Below are reference figures illustrating PPII bundle organization and residue patterns, reproduced with permission from Segura Rodríguez & Laurents (2024).

GUI buttons

  • Load PDB: Opens a file dialog (.pdb/.cif).
  • Prepare structure: Optional cleanup (remove solvent/ligands, add hydrogens).
  • Detect PPII: Scans backbone torsion angles (φ/ψ), creates selections (ppii_1, ppii_2, …) and colors them.
  • Scan Cα–H···O=C: Searches plausible non-canonical contacts; cutoffs configurable.
  • Style / Colors: Applies the selected color scheme.
  • Export: Writes CSV reports (angles, contacts, detected segments).

Troubleshooting

  • GUI does not appear → Ensure PyMOL build includes Tkinter.
  • No segments detected → Check backbone completeness; relax φ/ψ windows.
  • Too many contacts → Tighten cutoffs in Scan Cα–H···O=C.
  • CSV/PDB not written → Verify write permissions.
  • Emojis not visible → Cosmetic only.

Compatibility

  • PyMOL: 2.x (Tkinter required for the GUI)
  • OS: Windows / Linux / macOS
  • Python: 3.x
  • Notes: requires complete backbone atoms to compute φ/ψ; add hydrogens to enable geometric screening.

Support

Found a bug or have a feature request? → Open an issue on GitHub.

How to cite

If PPIIMoL is useful in your work, please cite both the software and the reference article:

Software Rodríguez Fernández, S. E. (2025). PPIIMoL (version 1.1) [Computer software]. GitHub. https://github.com/silviaenma/PPIIMoL

Reference article Segura Rodríguez, C. M., & Laurents, D. V. (2024). Architectonic principles of polyproline II helix bundle protein domains. Archives of Biochemistry and Biophysics, 741, 109981. DOI

Repository

PPIIMoL on GitHub

License

PPIIMoL is released under the GNU GPLv3.