Rotamer Toggle: Difference between revisions
mNo edit summary  | 
				mNo edit summary  | 
				||
| (32 intermediate revisions by 4 users not shown) | |||
| Line 1: | Line 1: | ||
===DESCRIPTION===  | ===DESCRIPTION===  | ||
Backbone-Dependent Rotamer library (Dunbrack, Cohen ; see ref) is imported into pymol giving access to this information.  There are a number of different ways to use the data, I've only implemented a few as well as added extra functions that seemed useful.  | Backbone-Dependent Rotamer library (Dunbrack, Cohen ; see ref) is imported into pymol giving access to this information.  There are a number of different ways to use the data, I've only implemented a few as well as added extra functions that seemed useful.  | ||
*Rotamer Menu - an added menu into menu.py, which displays the most common rotamers for the given(clicked) residue; you can also set the residue any of the common rotamers as well  | |||
*colorRotamers - color rotamers by closest matching rotamer angles from database; i.e. color by how common each rotamer of selection, blue - red (least to most common).  | *colorRotamers - color rotamers by closest matching rotamer angles from database; i.e. color by how common each rotamer of selection, blue - red (least to most common).  | ||
*set_rotamer - routine called by above menu, but can be called manually to set a specific residues side-chain angles  | *set_rotamer - routine called by above menu, but can be called manually to set a specific residues side-chain angles  | ||
*set_phipsi - set all phi,psi angles of given selection to given angles (useful for creating secondary structures)    | *set_phipsi - set all phi,psi angles of given selection to given angles (useful for creating secondary structures)  | ||
*createRotamerPDBs - create pdb for each rotamer of given selection ; filter by rotamer-probability  | |||
===IMAGES===  | |||
<gallery>  | |||
Image:RotamerMenu.png|Rotamer Menu for a GLN residue  | |||
Image:GLURotamerComparison5.png|Rotamer Comparison of crystal structure and most common for GLU; just as an example  | |||
</gallery>  | |||
Print out while selecting most common rotamer from above-left image (GLN residue):  | |||
  Given GLN:40 PHI,PSI (-171.626373291,-96.0500335693) : bin (-170,-100)  | |||
  CHIs: [179.18069458007812, 72.539344787597656, -47.217315673828125]  | |||
  Setting Chi1 to -176.9  | |||
  Setting Chi2 to 177.4  | |||
  Setting Chi3 to 0.7  | |||
===SETUP===  | ===SETUP===  | ||
run "rotamers.py" and use functions from commandline.  | |||
or  | or  | ||
| Line 16: | Line 30: | ||
*copy bbdep02.May.sortlib to C:/Program Files/DeLano Scientific/PyMol/modules/pymol/bbdep02.May.sortlib (or newer version of sorted bbdep)  | *copy bbdep02.May.sortlib to C:/Program Files/DeLano Scientific/PyMol/modules/pymol/bbdep02.May.sortlib (or newer version of sorted bbdep)  | ||
This is only one possible way to do this, I am sure there are many others. I'm not going to post the bbdep, but there is a link in the References section to Dunbrack's download page (get the "sorted" lib)  | This is only one possible way to do this, I am sure there are many others. I'm not going to post the bbdep, but there is a link in the References section to Dunbrack's download page (get the "sorted" lib)  | ||
===NOTES / STATUS===  | ===NOTES / STATUS===  | ||
*  | *Tested on Pymolv0.97, Windows platform, Red Hat Linux 9.0 and Fedora Core 4. Will test v0.98 and MacOSX later on.  | ||
*The way it's setup now, when you import rotamers , it will automatically read-in the rotamer database; this may not be what you want.  | *The way it's setup now, when you import rotamers , it will automatically read-in the rotamer database; this may not be what you want.  | ||
*Post problems in the discussion page, on 'my talk' page or just email me : dwkulp@mail.med.upenn.edu  | |||
TASKS TODO:  | |||
*Rotamer Movie, using mset, etc create movie to watch cycle through rotamers  | |||
*Code could be organized a bit better; due to time constraints this is good for now..  | *Code could be organized a bit better; due to time constraints this is good for now..  | ||
TASKS DONE:  | |||
*Store crystal structure in rotamer menu, so you can go back to original orientation  | |||
===USAGE===  | ===USAGE===  | ||
| Line 29: | Line 47: | ||
  set_rotamer selection, chi1_angle [,chi2_angle] [,chi3_angle] [,chi4_angle]  |   set_rotamer selection, chi1_angle [,chi2_angle] [,chi3_angle] [,chi4_angle]  | ||
  set_phipsi selection phi_angle, psi_angle  |   set_phipsi selection phi_angle, psi_angle  | ||
 createRotamerPBDs selection [,ncutoff] [,pcutoff] [,prefix]  | |||
===EXAMPLES===  | ===EXAMPLES===  | ||
| Line 34: | Line 53: | ||
    set_rotamer resi 40, -60,-40   (only set chi1,chi2 angles)  |     set_rotamer resi 40, -60,-40   (only set chi1,chi2 angles)  | ||
    set_phipsi resi 10-40, -60,-60 (create an alpha-helical-like section)  |     set_phipsi resi 10-40, -60,-60 (create an alpha-helical-like section)  | ||
    createRotamerPDBs resi 10-12, ncutoff=3 (create 9 PDBs; each with one of the 3 most probable rotamers for resi 10,11,12)  | |||
   createRotamerPDBs resi 14, pcutoff=0.4  (create a pdb file for each rotamer of residue 14 with probablity > 0.4)  | |||
===REFERENCES===  | ===REFERENCES===  | ||
Dunbrack and Cohen. Protein Science 1997  | Dunbrack and Cohen. Protein Science 1997  | ||
| Line 60: | Line 81: | ||
#           phi,psi bin for rotamer  | #           phi,psi bin for rotamer  | ||
#     3. set_rotamer - set a side-chain    | #     3. set_rotamer - set a side-chain    | ||
#           to a specific rotamer	  | #           to a specific rotamer  | ||
#  | #  | ||
#     To setup a rotamer menu in the    | #     To setup a rotamer menu in the    | ||
| Line 72: | Line 93: | ||
#  Dunbrack and Cohen. Protein Science 1997  | #  Dunbrack and Cohen. Protein Science 1997  | ||
####################################################################  | ####################################################################  | ||
import colorsys,sys  | import colorsys,sys  | ||
import editing  | import editing  | ||
import os  | import os  | ||
import cmd  | import cmd  | ||
import math  | import math  | ||
# Path for library  | # Path for library  | ||
ROTLIB=os.environ['PYMOL_PATH']+"/modules/pymol/bbdep02.May.sortlib"  | ROTLIB=os.environ['PYMOL_PATH']+"/modules/pymol/bbdep02.May.sortlib"  | ||
# Place for library in memory..  | # Place for library in memory..  | ||
rotdat = {}  | rotdat = {}  | ||
def readRotLib():	  | def readRotLib():  | ||
     # Column indexes in rotamer library..  |      # Column indexes in rotamer library..  | ||
     RES  = 0  |      RES  = 0  | ||
| Line 97: | Line 116: | ||
     CHI3 = 11  |      CHI3 = 11  | ||
     CHI4 = 12  |      CHI4 = 12  | ||
     if os.path.exists(ROTLIB):  |      if os.path.exists(ROTLIB):  | ||
                print "File exists: "+ROTLIB  | |||
                input = open(ROTLIB, 'r')  | |||
                for line in input:  | |||
                    # Parse by whitespace (I believe format is white space and not fixed-width columns)  | |||
                    dat = line.split()  | |||
                    # Add to rotamer library in memory :    | |||
                    #   key format       RES:PHI_BIN:PSI_BIN  | |||
                    #   value format     PROB, CHI1, CHI2, CHI3, CHI4  | |||
                    key=dat[RES]+":"+dat[PHI]+":"+dat[PSI]  | |||
                    if key in rotdat:  | |||
                        rotdat[key].append([ dat[PROB], dat[CHI1], dat[CHI2], dat[CHI3], dat[CHI4] ])  | |||
                    else:  | |||
                        rotdat[key] = [ [ dat[PROB], dat[CHI1], dat[CHI2], dat[CHI3], dat[CHI4] ] ]  | |||
     else:  |      else:  | ||
        print "Couldn't find Rotamer library"  | |||
# Atoms for each side-chain angle for each residue  | # Atoms for each side-chain angle for each residue  | ||
CHIS = {}  | CHIS = {}  | ||
CHIS["ARG"] = [ ["N","CA","CB","CG" ],  | CHIS["ARG"] = [ ["N","CA","CB","CG" ],  | ||
                ["CA","CB","CG","CD" ],  | |||
                ["CB","CG","CD","NE" ],  | |||
                ["CG","CD","NE","CZ" ]  | |||
              ]  | |||
CHIS["ASN"] = [ ["N","CA","CB","CG" ],  | CHIS["ASN"] = [ ["N","CA","CB","CG" ],  | ||
                ["CA","CB","CG","OD2" ]  | |||
              ]  | |||
CHIS["ASP"] = [ ["N","CA","CB","CG" ],  | CHIS["ASP"] = [ ["N","CA","CB","CG" ],  | ||
                ["CA","CB","CG","OD1" ]  | |||
              ]  | |||
CHIS["CYS"] = [ ["N","CA","CB","  | CHIS["CYS"] = [ ["N","CA","CB","SG" ]  | ||
              ]  | |||
CHIS["GLN"] = [ ["N","CA","CB","CG" ],  | CHIS["GLN"] = [ ["N","CA","CB","CG" ],  | ||
                ["CA","CB","CG","CD" ],  | |||
                ["CB","CG","CD","OE1"]  | |||
              ]  | |||
CHIS["GLU"] = [ ["N","CA","CB","CG" ],  | CHIS["GLU"] = [ ["N","CA","CB","CG" ],  | ||
                ["CA","CB","CG","CD" ],  | |||
                ["CB","CG","CD","OE1"]  | |||
              ]  | |||
CHIS["HIS"] = [ ["N","CA","CB","CG" ],  | CHIS["HIS"] = [ ["N","CA","CB","CG" ],  | ||
                ["CA","CB","CG","ND1"]  | |||
              ]  | |||
CHIS["ILE"] = [ ["N","CA","CB","CG1" ],  | CHIS["ILE"] = [ ["N","CA","CB","CG1" ],  | ||
                ["CA","CB","CG1","CD1" ]  | |||
              ]  | |||
CHIS["LEU"] = [ ["N","CA","CB","CG" ],  | CHIS["LEU"] = [ ["N","CA","CB","CG" ],  | ||
                ["CA","CB","CG","CD1" ]  | |||
              ]  | |||
CHIS["LYS"] = [ ["N","CA","CB","CG" ],  | CHIS["LYS"] = [ ["N","CA","CB","CG" ],  | ||
                ["CA","CB","CG","CD" ],  | |||
                ["CB","CG","CD","CE"],  | |||
                ["CG","CD","CE","NZ"]  | |||
              ]  | |||
CHIS["MET"] = [ ["N","CA","CB","CG" ],  | CHIS["MET"] = [ ["N","CA","CB","CG" ],  | ||
                ["CA","CB","CG","SD" ],  | |||
                ["CB","CG","SD","CE"]  | |||
              ]  | |||
CHIS["PHE"] = [ ["N","CA","CB","CG" ],  | CHIS["PHE"] = [ ["N","CA","CB","CG" ],  | ||
                ["CA","CB","CG","CD1" ]  | |||
              ]  | |||
CHIS["PRO"] = [ ["N","CA","CB","CG" ],  | CHIS["PRO"] = [ ["N","CA","CB","CG" ],  | ||
                ["CA","CB","CG","CD" ]  | |||
              ]  | |||
CHIS["SER"] = [ ["N","CA","CB","OG" ]  | CHIS["SER"] = [ ["N","CA","CB","OG" ]  | ||
              ]  | |||
CHIS["THR"] = [ ["N","CA","CB","OG1" ]  | CHIS["THR"] = [ ["N","CA","CB","OG1" ]  | ||
              ]  | |||
CHIS["TRP"] = [ ["N","CA","CB","CG" ],  | |||
                ["CA","CB","CG","CD1"]  | |||
              ]  | |||
CHIS["TYR"] = [ ["N","CA","CB","CG" ],  | CHIS["TYR"] = [ ["N","CA","CB","CG" ],  | ||
                ["CA","CB","CG","CD1" ]  | |||
              ]  | |||
CHIS["VAL"] = [ ["N","CA","CB","CG1" ]  | CHIS["VAL"] = [ ["N","CA","CB","CG1" ]  | ||
              ]  | |||
# Color Rotamer by side-chain angle position  | # Color Rotamer by side-chain angle position  | ||
#  'bin' side-chain angles into closest  | #  'bin' side-chain angles into closest  | ||
def colorRotamers(sel):  | def colorRotamers(sel):  | ||
     doRotamers(sel)  |      doRotamers(sel)  | ||
# Utility function, to set phi,psi angles for a given selection  | # Utility function, to set phi,psi angles for a given selection  | ||
# Note: Cartoon, Ribbon functionality will not display correctly after this  | # Note: Cartoon, Ribbon functionality will not display correctly after this  | ||
def set_phipsi(sel, phi,psi):  | def set_phipsi(sel, phi,psi):  | ||
     doRotamers(sel,angles=[phi,psi],type="set")  |      doRotamers(sel,angles=[phi,psi],type="set")  | ||
# Set a rotamer, based on a selection, a restype and chi angles  | # Set a rotamer, based on a selection, a restype and chi angles  | ||
def set_rotamer(sel, chi1, chi2=0,chi3=0,chi4=0):  | def set_rotamer(sel, chi1, chi2=0,chi3=0,chi4=0):  | ||
     at = cmd.get_model("byres ("+sel+")").atom[0]  |      at = cmd.get_model("byres ("+sel+")").atom[0]  | ||
     list = [chi1,chi2,chi3,chi4]  |      list = [chi1,chi2,chi3,chi4]  | ||
     for i in range(  |      for i in range(len(CHIS[at.resn])):  | ||
        print "Setting Chi"+str(i+1)+" to "+str(list[i])  | |||
         editing.set_dihedral(sel + ' and name '+CHIS[at.resn][i][0],	  |          editing.set_dihedral(sel + ' and name '+CHIS[at.resn][i][0],  | ||
                             sel + ' and name '+CHIS[at.resn][i][1],  | |||
                             sel + ' and name '+CHIS[at.resn][i][2],  | |||
                             sel + ' and name '+CHIS[at.resn][i][3], str(list[i]))  | |||
     # Remove some objects that got created  |      # Remove some objects that got created  | ||
     cmd.delete("pk1")  |      cmd.delete("pk1")  | ||
     cmd.delete("pk2")  |      cmd.delete("pk2")  | ||
     cmd.delete("pkmol")  |      cmd.delete("pkmol")  | ||
# Get Phi,Psi bins for given selection  | # Get Phi,Psi bins for given selection  | ||
# WARNING:  assume selection is single residue (will only return first residue bins)  | # WARNING:  assume selection is single residue (will only return first residue bins)  | ||
def getBins(sel):  | def getBins(sel):  | ||
     return doRotamers(sel, type="bins")  |      return doRotamers(sel, type="bins")  | ||
# Color Ramp...  | # Color Ramp...  | ||
def rot_color(vals):    | def rot_color(vals):    | ||
        nbins = 10  | |||
        vals.sort(key=lambda x:x[1])  | |||
#       print "End sort: "+str(len(vals))+" : "+str(nbins)  | |||
        # Coloring scheme...  | |||
        j = 0  | |||
        rgb = [0.0,0.0,0.0]  | |||
        sel_str = ""  | |||
        for i in range(len(vals)):  | |||
                if int(len(vals)/nbins) == 0 or i % int(len(vals)/nbins) == 0:  | |||
                      hsv = (colorsys.TWO_THIRD - colorsys.TWO_THIRD * float(j) / (nbins-1), 1.0, 1.0)  | |||
                      #convert to rgb and append to color list  | |||
                      rgb = colorsys.hsv_to_rgb(hsv[0],hsv[1],hsv[2])  | |||
                      if j < nbins-1:  | |||
                              j += 1  | |||
                cmd.set_color("RotProbColor"+str(i), rgb)  | |||
                cmd.color("RotProbColor"+str(i), str(vals[i][0]))  | |||
# Main function  | |||
def doRotamers(sel,angles=[], type="color"):  | |||
# Main function   | |||
def doRotamers(sel,angles=[], type="color"):   |         # Read in Rotamer library if not already done  | ||
        if len(rotdat) == 0:  | |||
                readRotLib()  | |||
        # Set up some variables..  | |||
        residues = ['dummy']  # Keep track of residues already done  | |||
        probs = []            # probability of each residue conformation  | |||
        phi = 0               # phi,psi angles of current residue  | |||
        psi = 0  | |||
        # Get atoms from selection  | |||
        atoms = cmd.get_model("byres ("+sel+")")  | |||
         # Loop through atoms in selection  | |||
        for at in atoms.atom:  | |||
         # Loop through atoms in selection	  |             try:  | ||
               # Don't process Glycines or Alanines  | |||
               if not (at.resn == 'GLY' or at.resn == 'ALA'):  | |||
                if at.chain+":"+at.resn+":"+at.resi not in residues:  | |||
                    residues.append(at.chain+":"+at.resn+":"+at.resi)  | |||
                    # Check for a null chain id (some PDBs contain this)    | |||
                    unit_select = ""  | |||
                    if at.chain != "":  | |||
                        unit_select = "chain "+str(at.chain)+" and "  | |||
                    # Define selections for residue i-1, i and i+1  | |||
                    residue_def = unit_select+'resi '+str(at.resi)  | |||
                    residue_def_prev = unit_select+'resi '+str(int(at.resi)-1)  | |||
                    residue_def_next = unit_select+'resi '+str(int(at.resi)+1)  | |||
                    # Compute phi/psi angle  | |||
                    phi = cmd.get_dihedral(residue_def_prev+' and name C',residue_def+' and name N',residue_def+' and name CA',residue_def+' and name C')  | |||
                    psi = cmd.get_dihedral(residue_def+' and name N',residue_def+' and name CA',residue_def+' and name C',residue_def_next+' and name N')  | |||
                    if type == "set":  | |||
                            print "Changing "+at.resn+str(at.resi)+" from "+str(phi)+","+str(psi)+" to "+str(angles[0])+","+str(angles[1])  | |||
                            cmd.set_dihedral(residue_def_prev+' and name C',residue_def+' and name N',residue_def+' and name CA',residue_def+' and name C',angles[0])  | |||
                            cmd.set_dihedral(residue_def+' and name N',residue_def+' and name CA',residue_def+' and name C',residue_def_next+' and name N', angles[1])  | |||
                            continue  | |||
                    # Find correct 10x10 degree bin                                       | |||
                    phi_digit = abs(int(phi)) - abs(int(phi/10)*10)  | |||
                    psi_digit = abs(int(psi)) - abs(int(psi/10)*10)  | |||
                    # Remember sign of phi,psi angles  | |||
                    phi_sign = 1  | |||
                    if phi < 0:    phi_sign = -1  | |||
                    psi_sign = 1  | |||
                    if psi < 0:    psi_sign = -1  | |||
                    # Compute phi,psi bins  | |||
                    phi_bin = int(math.floor(abs(phi/10))*10*phi_sign)  | |||
                    if phi_digit >= 5:    phi_bin = int(math.ceil(abs(phi/10))*10*phi_sign)  | |||
                    psi_bin = int(math.floor(abs(psi/10))*10*psi_sign)  | |||
                    if psi_digit >= 5:    psi_bin = int(math.ceil(abs(psi/10))*10*psi_sign)  | |||
                    print "Given "+at.resn+":"+at.resi+" PHI,PSI ("+str(phi)+","+str(psi)+") : bin ("+str(phi_bin)+","+str(psi_bin)+")"  | |||
                    # Get current chi angle measurements  | |||
                    chi = []  | |||
                    for i in range(len(CHIS[at.resn])):  | |||
                       chi.append(cmd.get_dihedral(residue_def + ' and name '+CHIS[at.resn][i][0],  | |||
                                                     residue_def + ' and name '+CHIS[at.resn][i][1],  | |||
                                                     residue_def + ' and name '+CHIS[at.resn][i][2],  | |||
                                                     residue_def + ' and name '+CHIS[at.resn][i][3]))  | |||
                    print "CHIs: "+str(chi)  | |||
                    if type == 'bins':  | |||
                         return [at.resn, phi_bin,psi_bin]  | |||
                    # Compute probabilities for given chi angles  | |||
                     prob = 0  |                      prob = 0  | ||
                    prob_box = 22                     | |||
                    for item in range(len(rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)])):  | |||
                        print "Rotamer from db: "+str(rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)][item])  | |||
                        if chi[0]:  | |||
                            if chi[0] >= float(rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)][item][1]) - (prob_box/2) and \  | |||
                                chi[0] <= float(rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)][item][1]) + (prob_box/2):  | |||
                                if len(chi) == 1:  | |||
                                        prob = rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)][item][0]  | |||
                                        break  | |||
                                if chi[1] >= float(rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)][item][2]) - (prob_box/2) and \  | |||
                                 float(chi[1] <= rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)][item][2]) + (prob_box/2):  | |||
                                        if len(chi) == 2:  | |||
                                            prob = rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)][item][0]  | |||
                                            break  | |||
                                        if chi[2] >= float(rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)][item][3]) - (prob_box/2) and \  | |||
                                           float(chi[2] <= rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)][item][3]) + (prob_box/2):  | |||
                                            if len(chi) == 3:  | |||
                                                prob = rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)][item][0]  | |||
                                                break  | |||
                                            if chi[3] >= float(rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)][item][4]) - (prob_box/2) and \  | |||
                                               float(chi[3] <= rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)][item][4]) + (prob_box/2):  | |||
                                                prob = rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)][item][0]  | |||
                                                break  | |||
                    print "PROB OF ROTAMER: "+str(prob)  | |||
                    print "---------------------------"  | |||
                    probs.append([residue_def, prob])  | |||
            except:  | |||
#	  | #               probs.append([residue_def, -1])  | ||
                print "Exception found"  | |||
                continue  | |||
        # Color according to rotamer probability  | |||
        rot_color(probs)  | |||
#  Create PDB files containing most probable rotamers  | |||
def createRotamerPDBs(sel,ncutoff=10,pcutoff=0,prefix="ROTAMER"):  | |||
readRotLib()  | |||
        # Get atoms from selection  | |||
        atoms = cmd.get_model("byres ("+sel+")")  | |||
        # Set up some variables..  | |||
        residues = ['dummy']  # Keep track of residues already done  | |||
        # Loop through atoms in selection  | |||
        for at in atoms.atom:  | |||
                if at.resn in ('GLY','ALA') or "%s:%s:%s" % (at.chain,at.resn,at.resi) in residues:  | |||
                        continue  | |||
                # Add to residue list (keep track of which ones we've done)  | |||
                residues.append("%s:%s:%s" % (at.chain,at.resn,at.resi))  | |||
                # Check for a null chain id (some PDBs contain this)  | |||
                unit_select = ""  | |||
                if not at.chain == "":  | |||
                    unit_select = "chain "+str(at.chain)+" and "  | |||
                # Define selections for residue   | |||
                residue_def = unit_select+'resi '+str(at.resi)  | |||
                # Get bin (phi,psi) definitions for this residue  | |||
                bin = doRotamers(residue_def, type='bins')  | |||
                # Store crystal angle  | |||
                crystal_angles = [0.0,0.0,0.0,0.0]  | |||
                for angle in range(3):  | |||
                        try:  | |||
                                crystal_angles[angle] = bin[3][angle]  | |||
                        except IndexError:  | |||
                                break  | |||
                # Retreive list of rotamers for this phi,psi bin + residue type  | |||
                match_rotamers = rotdat["%s:%s:%s" % (bin[0],str(bin[1]),str(bin[2]))]  | |||
                count = 0  | |||
                for item in range(len(match_rotamers)):  | |||
                        # Store probablity  | |||
                        prob = match_rotamers[item][0]  | |||
                        # Check cutoffs  | |||
                        if float(prob) <= float(pcutoff):  | |||
                                continue  | |||
                        if float(count) >= float(ncutoff):  | |||
                                break  | |||
                        # Increment count  | |||
                        count += 1  | |||
                        # Output to screen ...  | |||
                        print "Residue %s%s, rotamer %i, prob %s" % (str(at.resn),str(at.resi),int(item),str(prob))  | |||
                        # Set to new rotamer  | |||
                        set_rotamer(residue_def,match_rotamers[item][1],match_rotamers[item][2],match_rotamers[item][3],match_rotamers[item][4])                                                                                                  | |||
                        # Store in PDB file  | |||
                        cmd.save("%s_%s%s_%i_%s.pdb" % (prefix,str(at.resn),str(at.resi),int(item),str(prob)))  | |||
                        # Reset crystal angle  | |||
                        set_rotamer(residue_def,crystal_angles[0],crystal_angles[1],crystal_angles[2],crystal_angles[3])  | |||
# Uncommenting this is nice because it loads rotamer library upon startup  | |||
#  however, it slows the PyMOL loading process a lot  | |||
#  instead I've put this call into the menuing code..  | |||
# readRotLib()  | |||
cmd.extend('set_phipsi',set_phipsi)  | cmd.extend('set_phipsi',set_phipsi)  | ||
cmd.extend('set_rotamer',set_rotamer)  | cmd.extend('set_rotamer',set_rotamer)  | ||
cmd.extend('colorRotamers',colorRotamers)  | cmd.extend('colorRotamers',colorRotamers)  | ||
cmd.extend('createRotamerPDBs',createRotamerPDBs)  | |||
</source>  | |||
MyMenu.py  | MyMenu.py  | ||
| Line 403: | Line 492: | ||
	# Check for rotamer library being loaded  | 	# Check for rotamer library being loaded  | ||
	if not rotamers.rotdat:  | 	if not rotamers.rotdat:  | ||
             rotamers.readRotLib()  | |||
#	     return [ [2, "Must run rotamers.py first",'']]  | |||
	# Check for valid rotamer residue..  | 	# Check for valid rotamer residue..  | ||
| Line 420: | Line 510: | ||
	# Set max number of rotamers to display (probably should be somewhere 'higher up' in the code)  | 	# Set max number of rotamers to display (probably should be somewhere 'higher up' in the code)  | ||
	max_rotamers = 10  | 	max_rotamers = min(10, len(match_rotamers))  | ||
	# Create menu entry for each possible rotamer  | 	# Create menu entry for each possible rotamer  | ||
         for item in range(  |          for item in range(max_rotamers):  | ||
              result.append( [ 1, str(match_rotamers[item]), 'rotamers.set_rotamer("'+s+'","'\  |               result.append( [ 1, str(match_rotamers[item]), 'rotamers.set_rotamer("'+s+'","'\  | ||
										    +str(match_rotamers[item][1])+'","'\  | 										    +str(match_rotamers[item][1])+'","'\  | ||
| Line 434: | Line 520: | ||
										    +str(match_rotamers[item][4])+'")'])  | 										    +str(match_rotamers[item][4])+'")'])  | ||
	return result  | 	return result  | ||
</source>  | </source>  | ||
| Line 439: | Line 526: | ||
[[Category:Script_Library|Rotamer Toggle]]  | [[Category:Script_Library|Rotamer Toggle]]  | ||
[[Category:Structural_Biology_Scripts|Rotamer Toggle]]  | |||
Latest revision as of 03:04, 17 August 2010
DESCRIPTION
Backbone-Dependent Rotamer library (Dunbrack, Cohen ; see ref) is imported into pymol giving access to this information. There are a number of different ways to use the data, I've only implemented a few as well as added extra functions that seemed useful.
- Rotamer Menu - an added menu into menu.py, which displays the most common rotamers for the given(clicked) residue; you can also set the residue any of the common rotamers as well
 - colorRotamers - color rotamers by closest matching rotamer angles from database; i.e. color by how common each rotamer of selection, blue - red (least to most common).
 - set_rotamer - routine called by above menu, but can be called manually to set a specific residues side-chain angles
 - set_phipsi - set all phi,psi angles of given selection to given angles (useful for creating secondary structures)
 - createRotamerPDBs - create pdb for each rotamer of given selection ; filter by rotamer-probability
 
IMAGES
Print out while selecting most common rotamer from above-left image (GLN residue):
Given GLN:40 PHI,PSI (-171.626373291,-96.0500335693) : bin (-170,-100) CHIs: [179.18069458007812, 72.539344787597656, -47.217315673828125] Setting Chi1 to -176.9 Setting Chi2 to 177.4 Setting Chi3 to 0.7
SETUP
run "rotamers.py" and use functions from commandline.
or
To setup a rotamer menu inside the residue menu (default windows pymol installation):
- copy rotamers.py to C:/Program Files/DeLano Scientific/PyMol/modules/pymol/rotamers.py
 - copy mymenu.py to C:/Program Files/DeLano Scientific/PyMol/modules/pymol/menu.py (WARNING : overwrites default menu.py - use at your own risk)
 - copy bbdep02.May.sortlib to C:/Program Files/DeLano Scientific/PyMol/modules/pymol/bbdep02.May.sortlib (or newer version of sorted bbdep)
 
This is only one possible way to do this, I am sure there are many others. I'm not going to post the bbdep, but there is a link in the References section to Dunbrack's download page (get the "sorted" lib)
NOTES / STATUS
- Tested on Pymolv0.97, Windows platform, Red Hat Linux 9.0 and Fedora Core 4. Will test v0.98 and MacOSX later on.
 - The way it's setup now, when you import rotamers , it will automatically read-in the rotamer database; this may not be what you want.
 - Post problems in the discussion page, on 'my talk' page or just email me : dwkulp@mail.med.upenn.edu
 
TASKS TODO:
- Rotamer Movie, using mset, etc create movie to watch cycle through rotamers
 - Code could be organized a bit better; due to time constraints this is good for now..
 
TASKS DONE:
- Store crystal structure in rotamer menu, so you can go back to original orientation
 
USAGE
colorRotamers selection set_rotamer selection, chi1_angle [,chi2_angle] [,chi3_angle] [,chi4_angle] set_phipsi selection phi_angle, psi_angle createRotamerPBDs selection [,ncutoff] [,pcutoff] [,prefix]
EXAMPLES
colorRotamers chain A set_rotamer resi 40, -60,-40 (only set chi1,chi2 angles) set_phipsi resi 10-40, -60,-60 (create an alpha-helical-like section) createRotamerPDBs resi 10-12, ncutoff=3 (create 9 PDBs; each with one of the 3 most probable rotamers for resi 10,11,12) createRotamerPDBs resi 14, pcutoff=0.4 (create a pdb file for each rotamer of residue 14 with probablity > 0.4)
REFERENCES
Dunbrack and Cohen. Protein Science 1997
Dunbrack Lab Page (Contains backbone-dependent library)
SCRIPTS (Rotamers.py ; MyMenu.py)
Rotamers.py
##################################################################
# File:          Rotamers.py
# Author:        Dan Kulp
# Creation Date: 6/8/05
# Contact:       dwkulp@mail.med.upenn.edu
#
# Notes:
#     Incorporation of Rotamer library
#     readRotLib() - fills rotdat; 
#        indexed by "RES:PHI_BIN:PSI_BIN".
#
#     Three main functions:
#     1. colorRotamers - colors according
#          to rotamer probablitity
#     2. getBins(sel)
#           phi,psi bin for rotamer
#     3. set_rotamer - set a side-chain 
#           to a specific rotamer
#
#     To setup a rotamer menu in the 
#   right click, under "Residue"
#        1. cp mymenu.py modules/pymol/menu.py
#        2. cp rotamers.py modules/pymol/rotamers.py (update ROTLIB)
#
# Requirements:
#  set ROTLIB to path for rotamer library
# Reference: 
#  Dunbrack and Cohen. Protein Science 1997
####################################################################
 
import colorsys,sys
import editing
import os
import cmd
import math
 
# Path for library
ROTLIB=os.environ['PYMOL_PATH']+"/modules/pymol/bbdep02.May.sortlib"
 
# Place for library in memory..
rotdat = {}
 
def readRotLib():
    # Column indexes in rotamer library..
    RES  = 0
    PHI  = 1
    PSI  = 2
    PROB = 8
    CHI1 = 9
    CHI2 = 10
    CHI3 = 11
    CHI4 = 12
 
    if os.path.exists(ROTLIB):
                print "File exists: "+ROTLIB
                input = open(ROTLIB, 'r')
                for line in input:
 
                    # Parse by whitespace (I believe format is white space and not fixed-width columns)
                    dat = line.split()
 
                    # Add to rotamer library in memory : 
                    #   key format       RES:PHI_BIN:PSI_BIN
                    #   value format     PROB, CHI1, CHI2, CHI3, CHI4
                    key=dat[RES]+":"+dat[PHI]+":"+dat[PSI]
                    if key in rotdat:
                        rotdat[key].append([ dat[PROB], dat[CHI1], dat[CHI2], dat[CHI3], dat[CHI4] ])
                    else:
                        rotdat[key] = [ [ dat[PROB], dat[CHI1], dat[CHI2], dat[CHI3], dat[CHI4] ] ]
 
 
    else:
        print "Couldn't find Rotamer library"
 
 
# Atoms for each side-chain angle for each residue
CHIS = {}
CHIS["ARG"] = [ ["N","CA","CB","CG" ],
                ["CA","CB","CG","CD" ],
                ["CB","CG","CD","NE" ],
                ["CG","CD","NE","CZ" ]
              ]
 
CHIS["ASN"] = [ ["N","CA","CB","CG" ],
                ["CA","CB","CG","OD2" ]
              ]
 
CHIS["ASP"] = [ ["N","CA","CB","CG" ],
                ["CA","CB","CG","OD1" ]
              ]
CHIS["CYS"] = [ ["N","CA","CB","SG" ]
              ]
 
CHIS["GLN"] = [ ["N","CA","CB","CG" ],
                ["CA","CB","CG","CD" ],
                ["CB","CG","CD","OE1"]
              ]
 
CHIS["GLU"] = [ ["N","CA","CB","CG" ],
                ["CA","CB","CG","CD" ],
                ["CB","CG","CD","OE1"]
              ]
 
CHIS["HIS"] = [ ["N","CA","CB","CG" ],
                ["CA","CB","CG","ND1"]
              ]
 
CHIS["ILE"] = [ ["N","CA","CB","CG1" ],
                ["CA","CB","CG1","CD1" ]
              ]
 
CHIS["LEU"] = [ ["N","CA","CB","CG" ],
                ["CA","CB","CG","CD1" ]
              ]
 
CHIS["LYS"] = [ ["N","CA","CB","CG" ],
                ["CA","CB","CG","CD" ],
                ["CB","CG","CD","CE"],
                ["CG","CD","CE","NZ"]
              ]
 
CHIS["MET"] = [ ["N","CA","CB","CG" ],
                ["CA","CB","CG","SD" ],
                ["CB","CG","SD","CE"]
              ]
 
CHIS["PHE"] = [ ["N","CA","CB","CG" ],
                ["CA","CB","CG","CD1" ]
              ]
 
CHIS["PRO"] = [ ["N","CA","CB","CG" ],
                ["CA","CB","CG","CD" ]
              ]
 
CHIS["SER"] = [ ["N","CA","CB","OG" ]
              ]
 
CHIS["THR"] = [ ["N","CA","CB","OG1" ]
              ]
 
CHIS["TRP"] = [ ["N","CA","CB","CG" ],
                ["CA","CB","CG","CD1"]
              ]
 
CHIS["TYR"] = [ ["N","CA","CB","CG" ],
                ["CA","CB","CG","CD1" ]
              ]
 
CHIS["VAL"] = [ ["N","CA","CB","CG1" ]
              ]
 
# Color Rotamer by side-chain angle position
#  'bin' side-chain angles into closest
def colorRotamers(sel):
    doRotamers(sel)
 
# Utility function, to set phi,psi angles for a given selection
# Note: Cartoon, Ribbon functionality will not display correctly after this
def set_phipsi(sel, phi,psi):
    doRotamers(sel,angles=[phi,psi],type="set")
 
# Set a rotamer, based on a selection, a restype and chi angles
def set_rotamer(sel, chi1, chi2=0,chi3=0,chi4=0):
    at = cmd.get_model("byres ("+sel+")").atom[0]
 
    list = [chi1,chi2,chi3,chi4]
    for i in range(len(CHIS[at.resn])):
        print "Setting Chi"+str(i+1)+" to "+str(list[i])
        editing.set_dihedral(sel + ' and name '+CHIS[at.resn][i][0],
                             sel + ' and name '+CHIS[at.resn][i][1],
                             sel + ' and name '+CHIS[at.resn][i][2],
                             sel + ' and name '+CHIS[at.resn][i][3], str(list[i]))
 
    # Remove some objects that got created
    cmd.delete("pk1")
    cmd.delete("pk2")
    cmd.delete("pkmol")
 
# Get Phi,Psi bins for given selection
# WARNING:  assume selection is single residue (will only return first residue bins)
def getBins(sel):
    return doRotamers(sel, type="bins")
 
# Color Ramp...
def rot_color(vals): 
        nbins = 10
        vals.sort(key=lambda x:x[1])
#       print "End sort: "+str(len(vals))+" : "+str(nbins)
 
 
        # Coloring scheme...
        j = 0
        rgb = [0.0,0.0,0.0]
        sel_str = ""
        for i in range(len(vals)):
                if int(len(vals)/nbins) == 0 or i % int(len(vals)/nbins) == 0:
                      hsv = (colorsys.TWO_THIRD - colorsys.TWO_THIRD * float(j) / (nbins-1), 1.0, 1.0)
 
                      #convert to rgb and append to color list
                      rgb = colorsys.hsv_to_rgb(hsv[0],hsv[1],hsv[2])
                      if j < nbins-1:
                              j += 1
 
                cmd.set_color("RotProbColor"+str(i), rgb)
                cmd.color("RotProbColor"+str(i), str(vals[i][0]))
 
 
# Main function
def doRotamers(sel,angles=[], type="color"):
 
        # Read in Rotamer library if not already done
        if len(rotdat) == 0:
                readRotLib()
 
        # Set up some variables..
        residues = ['dummy']  # Keep track of residues already done
        probs = []            # probability of each residue conformation
        phi = 0               # phi,psi angles of current residue
        psi = 0
 
        # Get atoms from selection
        atoms = cmd.get_model("byres ("+sel+")")
 
        # Loop through atoms in selection
        for at in atoms.atom:
            try:
               # Don't process Glycines or Alanines
               if not (at.resn == 'GLY' or at.resn == 'ALA'):
                if at.chain+":"+at.resn+":"+at.resi not in residues:
                    residues.append(at.chain+":"+at.resn+":"+at.resi)
 
                    # Check for a null chain id (some PDBs contain this) 
                    unit_select = ""
                    if at.chain != "":
                        unit_select = "chain "+str(at.chain)+" and "
 
                    # Define selections for residue i-1, i and i+1
                    residue_def = unit_select+'resi '+str(at.resi)
                    residue_def_prev = unit_select+'resi '+str(int(at.resi)-1)
                    residue_def_next = unit_select+'resi '+str(int(at.resi)+1)
 
                    # Compute phi/psi angle
 
                    phi = cmd.get_dihedral(residue_def_prev+' and name C',residue_def+' and name N',residue_def+' and name CA',residue_def+' and name C')
                    psi = cmd.get_dihedral(residue_def+' and name N',residue_def+' and name CA',residue_def+' and name C',residue_def_next+' and name N')
                    if type == "set":
                            print "Changing "+at.resn+str(at.resi)+" from "+str(phi)+","+str(psi)+" to "+str(angles[0])+","+str(angles[1])
                            cmd.set_dihedral(residue_def_prev+' and name C',residue_def+' and name N',residue_def+' and name CA',residue_def+' and name C',angles[0])
                            cmd.set_dihedral(residue_def+' and name N',residue_def+' and name CA',residue_def+' and name C',residue_def_next+' and name N', angles[1])
                            continue
 
                    # Find correct 10x10 degree bin                                     
                    phi_digit = abs(int(phi)) - abs(int(phi/10)*10)
                    psi_digit = abs(int(psi)) - abs(int(psi/10)*10)
 
                    # Remember sign of phi,psi angles
                    phi_sign = 1
                    if phi < 0:    phi_sign = -1
 
                    psi_sign = 1
                    if psi < 0:    psi_sign = -1
 
                    # Compute phi,psi bins
                    phi_bin = int(math.floor(abs(phi/10))*10*phi_sign)
                    if phi_digit >= 5:    phi_bin = int(math.ceil(abs(phi/10))*10*phi_sign)
 
                    psi_bin = int(math.floor(abs(psi/10))*10*psi_sign)
                    if psi_digit >= 5:    psi_bin = int(math.ceil(abs(psi/10))*10*psi_sign)
 
                    print "Given "+at.resn+":"+at.resi+" PHI,PSI ("+str(phi)+","+str(psi)+") : bin ("+str(phi_bin)+","+str(psi_bin)+")"
 
 
                    # Get current chi angle measurements
                    chi = []
                    for i in range(len(CHIS[at.resn])):
                       chi.append(cmd.get_dihedral(residue_def + ' and name '+CHIS[at.resn][i][0],
                                                     residue_def + ' and name '+CHIS[at.resn][i][1],
                                                     residue_def + ' and name '+CHIS[at.resn][i][2],
                                                     residue_def + ' and name '+CHIS[at.resn][i][3]))
                    print "CHIs: "+str(chi)
                    if type == 'bins':
                         return [at.resn, phi_bin,psi_bin]
 
                    # Compute probabilities for given chi angles
                    prob = 0
                    prob_box = 22                   
                    for item in range(len(rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)])):
                        print "Rotamer from db: "+str(rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)][item])
                        if chi[0]:
                            if chi[0] >= float(rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)][item][1]) - (prob_box/2) and \
                                chi[0] <= float(rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)][item][1]) + (prob_box/2):
                                if len(chi) == 1:
                                        prob = rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)][item][0]
                                        break
                                if chi[1] >= float(rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)][item][2]) - (prob_box/2) and \
                                 float(chi[1] <= rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)][item][2]) + (prob_box/2):
                                        if len(chi) == 2:
                                            prob = rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)][item][0]
                                            break
                                        if chi[2] >= float(rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)][item][3]) - (prob_box/2) and \
                                           float(chi[2] <= rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)][item][3]) + (prob_box/2):
                                            if len(chi) == 3:
                                                prob = rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)][item][0]
                                                break
                                            if chi[3] >= float(rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)][item][4]) - (prob_box/2) and \
                                               float(chi[3] <= rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)][item][4]) + (prob_box/2):
                                                prob = rotdat[at.resn+":"+str(phi_bin)+":"+str(psi_bin)][item][0]
                                                break
 
 
                    print "PROB OF ROTAMER: "+str(prob)
                    print "---------------------------"
                    probs.append([residue_def, prob])
 
            except:
#               probs.append([residue_def, -1])
                print "Exception found"
                continue
 
        # Color according to rotamer probability
        rot_color(probs)
 
 
 
 
#  Create PDB files containing most probable rotamers
def createRotamerPDBs(sel,ncutoff=10,pcutoff=0,prefix="ROTAMER"):
 
        # Get atoms from selection
        atoms = cmd.get_model("byres ("+sel+")")
 
        # Set up some variables..
        residues = ['dummy']  # Keep track of residues already done
 
        # Loop through atoms in selection
        for at in atoms.atom:
                if at.resn in ('GLY','ALA') or "%s:%s:%s" % (at.chain,at.resn,at.resi) in residues:
                        continue
 
                # Add to residue list (keep track of which ones we've done)
                residues.append("%s:%s:%s" % (at.chain,at.resn,at.resi))
 
                # Check for a null chain id (some PDBs contain this)
                unit_select = ""
                if not at.chain == "":
                    unit_select = "chain "+str(at.chain)+" and "
 
                # Define selections for residue 
                residue_def = unit_select+'resi '+str(at.resi)
 
                # Get bin (phi,psi) definitions for this residue
                bin = doRotamers(residue_def, type='bins')
 
                # Store crystal angle
                crystal_angles = [0.0,0.0,0.0,0.0]
                for angle in range(3):
                        try:
                                crystal_angles[angle] = bin[3][angle]
                        except IndexError:
                                break
 
                # Retreive list of rotamers for this phi,psi bin + residue type
                match_rotamers = rotdat["%s:%s:%s" % (bin[0],str(bin[1]),str(bin[2]))]
 
                count = 0
                for item in range(len(match_rotamers)):
 
                        # Store probablity
                        prob = match_rotamers[item][0]
 
                        # Check cutoffs
                        if float(prob) <= float(pcutoff):
                                continue
 
                        if float(count) >= float(ncutoff):
                                break
 
                        # Increment count
                        count += 1
 
                        # Output to screen ...
                        print "Residue %s%s, rotamer %i, prob %s" % (str(at.resn),str(at.resi),int(item),str(prob))
 
                        # Set to new rotamer
                        set_rotamer(residue_def,match_rotamers[item][1],match_rotamers[item][2],match_rotamers[item][3],match_rotamers[item][4])                                                                                                
 
                        # Store in PDB file
                        cmd.save("%s_%s%s_%i_%s.pdb" % (prefix,str(at.resn),str(at.resi),int(item),str(prob)))
 
                        # Reset crystal angle
                        set_rotamer(residue_def,crystal_angles[0],crystal_angles[1],crystal_angles[2],crystal_angles[3])
 
# Uncommenting this is nice because it loads rotamer library upon startup
#  however, it slows the PyMOL loading process a lot
#  instead I've put this call into the menuing code..
# readRotLib()
 
cmd.extend('set_phipsi',set_phipsi)
cmd.extend('set_rotamer',set_rotamer)
cmd.extend('colorRotamers',colorRotamers)
cmd.extend('createRotamerPDBs',createRotamerPDBs)
MyMenu.py
Since menu.py is copyrighted I can't post my edited version, but you can create it very simply by adding these two peices of code
1. In the "pick_option(title,s,object=0)" function of menu.py add the following code after the first "result =" statement
# Edit dwkulp 6/11/05 , add a rotamer menu to residue menu
   if title == 'Residue':
	result.extend([[ 1, 'rotamers'    , rotamer_menu(s)]])
2. At the end of the file add this:
###############################################
# Dan Kulp
# Added Rotamer list to residue menu..
# rotamer.py must be importable (I placed it in 
# the same directory as menu.py)
###############################################
import rotamers
def rotamer_menu(s):
	# Check for rotamer library being loaded
	if not rotamers.rotdat:
             rotamers.readRotLib()
#	     return [ [2, "Must run rotamers.py first",'']]
	# Check for valid rotamer residue..
	res = cmd.get_model("byres ("+s+")").atom[0].resn
        if not res in rotamers.CHIS.keys():
	    return [ [2, "Residue: "+res+" not known sidechain or does not have rotamers", '']]
	# Get PHI,PSI bins for rotamer (also prints out current phi,psi, chi1,chi2,chi3,chi4)
	bins = rotamers.doRotamers(s,type='bins')
	# Add a title to the menu
	result = [ [2, bins[0]+' Rotamers in bin ('+str(bins[1])+','+str(bins[2])+')','' ], [1, ':::PROB,CHI1,CHI2,CHI3,CHI4:::','']]
        # Grab the entries for this residue and phi,psi bins
	match_rotamers = rotamers.rotdat[bins[0]+":"+str(bins[1])+":"+str(bins[2])]
	# Set max number of rotamers to display (probably should be somewhere 'higher up' in the code)
	max_rotamers = min(10, len(match_rotamers))
	# Create menu entry for each possible rotamer
        for item in range(max_rotamers):
             result.append( [ 1, str(match_rotamers[item]), 'rotamers.set_rotamer("'+s+'","'\
										    +str(match_rotamers[item][1])+'","'\
										    +str(match_rotamers[item][2])+'","'\
										    +str(match_rotamers[item][3])+'","'\
										    +str(match_rotamers[item][4])+'")'])
	return result

