Difference between revisions of "Wfmesh"

From PyMOLWiki
Jump to navigation Jump to search
Line 1: Line 1:
 +
{{Infobox script-repo
 +
|type      = Python Module
 +
|filename  = anglebetweenhelices.py
 +
|author    = [[User:Speleo3|Thomas Holder]]
 +
|license  = BSD
 +
}}
 +
 
===DESCRIPTION===
 
===DESCRIPTION===
 
This script will create an object for any Wavefront(.OBJ) mesh file.  This is a way to extend the number of objects you can use. Also, you have more control over the coloring, transformations, etc than the CGOs. Although there are a number of these obj files on the web, you can also easily created them with open source tools ([http://www.openfx.org OpenFX], [http://synapses.mcg.edu/tools/xroads/xroads.stm Crossroads3D]). It takes literally, 2 min to get an object created and then loaded into pymol.  Simply open OpenFX Designer, click File->Insert->Model, then choose any of the models (or create your own of course!), then export it as .3ds file.  Then open the .3ds file from Crossroads3D and export as Wavefront OBJ.   
 
This script will create an object for any Wavefront(.OBJ) mesh file.  This is a way to extend the number of objects you can use. Also, you have more control over the coloring, transformations, etc than the CGOs. Although there are a number of these obj files on the web, you can also easily created them with open source tools ([http://www.openfx.org OpenFX], [http://synapses.mcg.edu/tools/xroads/xroads.stm Crossroads3D]). It takes literally, 2 min to get an object created and then loaded into pymol.  Simply open OpenFX Designer, click File->Insert->Model, then choose any of the models (or create your own of course!), then export it as .3ds file.  Then open the .3ds file from Crossroads3D and export as Wavefront OBJ.   
Line 7: Line 14:
 
[[Image:Starwars_pymol.png|thumb|left|Star Wars Anyone?]]
 
[[Image:Starwars_pymol.png|thumb|left|Star Wars Anyone?]]
 
[[Image:Torus_pymol.png|thumb|left|A Torus, as an example shape you could do. Notice polygon normals are being used...need smoothing!]]
 
[[Image:Torus_pymol.png|thumb|left|A Torus, as an example shape you could do. Notice polygon normals are being used...need smoothing!]]
 
 
 
 
 
 
 
 
 
 
[[Category:ThirdParty_Scripts]]
 
 
 
 
 
 
 
 
 
  
 
===SETUP===
 
===SETUP===
Simply "run WFMesh.py"
+
Simply "import wfmesh.py"
  
 
===NOTES / STATUS===
 
===NOTES / STATUS===
Line 36: Line 24:
 
*Vertex Normal code is broken, so normals are per polygon right now.
 
*Vertex Normal code is broken, so normals are per polygon right now.
 
*Post problems in the discussion page, on 'my talk' page or just email me : dwkulp@mail.med.upenn.edu
 
*Post problems in the discussion page, on 'my talk' page or just email me : dwkulp@mail.med.upenn.edu
 
 
===USAGE===
 
createWFObj file, name  [,translate=[0,0,0]] [,flip=0]
 
  
 
===EXAMPLES===
 
===EXAMPLES===
Line 51: Line 35:
 
[http://www.openfx.org OpenFX]
 
[http://www.openfx.org OpenFX]
 
[http://synapses.mcg.edu/tools/xroads/xroads.stm Crossroads3D]
 
[http://synapses.mcg.edu/tools/xroads/xroads.stm Crossroads3D]
 
===SCRIPTS (WFMesh.py)===
 
WFMesh.py
 
<source lang="python">
 
###############################################
 
#  File:          WFObj.py
 
#  Author:        Dan Kulp
 
#  Creation Date: 5/13/05
 
#
 
#  Notes:
 
#  Create openGL objects from a wavefront (obj) file
 
###############################################
 
 
import os
 
import re
 
import math
 
from pymol.opengl.gl import *
 
from pymol.callback import Callback
 
 
 
# Wrapper Function, to create a given WFObj with a specific name (flip = 1 if OpenFX + Crossroads used)
 
def createWFObj(file, name,translate=[0,0,0],flip=0):
 
        obj = WFMesh(file,translate,flip)
 
        cmd.load_callback(obj,name)
 
 
 
# Class for Wavefront Mesh
 
class WFMesh(Callback):
 
 
    verts = []        # list of vertices
 
    polys = []        # list of poylgons
 
    pnorms = []      # list of polynomal normals
 
    vnorms = {}      # dict. of vertex normals
 
    vavenorms = []    # list of vertex normals, redundant -- I'm far froma python pro.
 
    sections = {}    # list of sections of mesh
 
 
    # Read mesh into memory
 
    def readOBJ(self,file):
 
        if os.path.exists(file):
 
            input = open(file,'r')
 
            for line in input:
 
                dat = re.split("\s+", line)
 
 
                # Find vertex line
 
                if line[0] == 'v' and line[1] != 't' and line[1] != 'n':    self.verts.append([dat[1],dat[2],dat[3]])
 
 
                # Find polygon line
 
                if line[0] == 'f':    self.polys.append([dat[1],dat[2],dat[3]])
 
 
                # Find section line
 
                if line[0] == 'g':    self.sections[len(self.polys)] = dat[1]
 
 
 
    # Compute the normals for each polygon and each vertex             
 
    def computeNorms(self):
 
 
        # Compute norms for each polygon
 
        for p in self.polys:
 
                v12 = [float(self.verts[int(p[1])-1][0]) - float(self.verts[int(p[0])-1][0]),\
 
                      float(self.verts[int(p[1])-1][1]) - float(self.verts[int(p[0])-1][1]),\
 
                      float(self.verts[int(p[1])-1][2]) - float(self.verts[int(p[0])-1][2]) \
 
                      ]
 
 
                v13 = [float(self.verts[int(p[2])-1][0]) - float(self.verts[int(p[0])-1][0]),\
 
                      float(self.verts[int(p[2])-1][1]) - float(self.verts[int(p[0])-1][1]),\
 
                      float(self.verts[int(p[2])-1][2]) - float(self.verts[int(p[0])-1][2]) \
 
                      ]
 
 
                # Compute poly normal
 
                polynorm = self.cross(v12,v13)
 
                norm = self.normalize(polynorm)
 
 
 
                # Files created by OpenFX, Crossroads combination need have their normals flipped     
 
                if self.flip:
 
                        norm[0] = -norm[0]
 
                        norm[1] = -norm[1]
 
                        norm[2] = -norm[2]
 
 
                # Append poly norm to polygonal norm array
 
                self.pnorms.append(norm)
 
 
                # Add norm to each vertexes norm..
 
                try:
 
                    self.vnorms[int(p[0])-1] = [float(self.vnorms[int(p[0])-1][0]) + norm[0],
 
                                            float(self.vnorms[int(p[0])-1][1]) + norm[1],
 
                                            float(self.vnorms[int(p[0])-1][2]) + norm[2]
 
                                          ]
 
                except:
 
                    self.vnorms[int(p[0])-1] = [norm[0],norm[1],norm[2]]
 
 
                try:                                     
 
                    self.vnorms[int(p[1])-1]  = [float(self.vnorms[int(p[1])-1][0]) + norm[0],
 
                                            float(self.vnorms[int(p[1])-1][1]) + norm[1],
 
                                            float(self.vnorms[int(p[1])-1][2]) + norm[2]
 
                                          ]
 
                except:
 
                    self.vnorms[int(p[1])-1] = [norm[0],norm[1],norm[2]]
 
 
                try:
 
                    self.vnorms[int(p[2])-1]  = [float(self.vnorms[int(p[1])-1][0]) + norm[0],
 
                                            float(self.vnorms[int(p[1])-1][1]) + norm[1],
 
                                            float(self.vnorms[int(p[1])-1][2]) + norm[2]
 
                                          ]
 
                except:
 
                    self.vnorms[int(p[2])-1] = [norm[0],norm[1],norm[2]]
 
 
 
        # Average out each vnorm..
 
        index = 0
 
        for v in self.vnorms.values():
 
                self.vavenorms.append([v[0]/4, v[1]/4, v[2]/4])       
 
                index += 1
 
 
    # Utility function to normalize a given vector
 
    def normalize(self,v):
 
        mag = v[0]*v[0]+v[1]*v[1]+v[2]*v[2]
 
        if mag <= 0:
 
            mag = 1
 
        else:
 
            mag = math.sqrt(mag)
 
 
        return [v[0]/mag, v[1]/mag,v[2]/mag]
 
 
    # Utility cross product function
 
    def cross(self,v1,v2):
 
        x = 0
 
        y = 1
 
        z = 2
 
 
        return [v1[y]*v2[z] - v1[z]*v2[y],\
 
                v1[z]*v2[x] - v1[x]*v2[z],\
 
                v1[x]*v2[y] - v1[y]*v2[x]
 
                ]
 
 
    # Constructor
 
    def __init__(self, file,translate=[0,0,0],flip=0):
 
        self.verts = []
 
        self.polys = []
 
        self.pnorms = []
 
        self.vnorms = {}
 
        self.vavenorms = []
 
        self.translate = translate
 
        self.flip      = flip
 
 
        print "Read in file: "+str(file)
 
        self.readOBJ(file)
 
        print "Done reading in WFMesh, now compute norms"
 
        self.computeNorms()
 
        print "Done computing norms, now display WFMesh"
 
 
    # Draw Function
 
    def __call__(self):
 
 
        glColorMaterial(GL_FRONT, GL_DIFFUSE); 
 
        glEnable(GL_COLOR_MATERIAL);
 
        glShadeModel(GL_SMOOTH);
 
 
        # Color Everything grey
 
        glColor3f(0.5,0.5,0.5);
 
 
        glPushMatrix()
 
        glTranslated(self.translate[0],self.translate[1],self.translate[2])
 
        for index, p in enumerate(self.polys):
 
                glBegin(GL_POLYGON)
 
                glNormal3f(float(self.pnorms[index][0]),float(self.pnorms[index][1]),float(self.pnorms[index][2]))
 
 
                for x in p:
 
                        glVertex3f(float(self.verts[int(x)-1][0]),float(self.verts[int(x)-1][1]),float(self.verts[int(x)-1][2]))
 
 
                        # Vertex Normals - not computed correctly, so commented out for now
 
#                      norm = self.vnorms[int(x)-1]
 
#                      glNormal3f(float(norm[0]),float(norm[1]),float(norm[2]))
 
                glEnd()
 
        glPopMatrix()
 
 
 
 
 
 
cmd.extend("createWFObj", createWFObj)
 
</source>
 
  
 
===ADDITIONAL RESOURCES===
 
===ADDITIONAL RESOURCES===
Line 240: Line 42:
  
 
[[Category:Script_Library|WFMesh]]
 
[[Category:Script_Library|WFMesh]]
 +
[[Category:ThirdParty_Scripts]]

Revision as of 08:07, 9 December 2011

Type Python Module
Download anglebetweenhelices.py
Author(s) Thomas Holder
License BSD
This code has been put under version control in the project Pymol-script-repo

DESCRIPTION

This script will create an object for any Wavefront(.OBJ) mesh file. This is a way to extend the number of objects you can use. Also, you have more control over the coloring, transformations, etc than the CGOs. Although there are a number of these obj files on the web, you can also easily created them with open source tools (OpenFX, Crossroads3D). It takes literally, 2 min to get an object created and then loaded into pymol. Simply open OpenFX Designer, click File->Insert->Model, then choose any of the models (or create your own of course!), then export it as .3ds file. Then open the .3ds file from Crossroads3D and export as Wavefront OBJ.

  • createWFMesh - create a mesh object from Wavefront (*.obj) formated file

IMAGES

Star Wars Anyone?
A Torus, as an example shape you could do. Notice polygon normals are being used...need smoothing!

SETUP

Simply "import wfmesh.py"

NOTES / STATUS

  • Tested on Pymolv0.97, Windows platform, should work on linux as well.
  • Coloring is fixed for grey and sections of mesh are stored, but not used.
  • Simple opengl calls; not optimized (display lists, etc) or anything.
  • Vertex Normal code is broken, so normals are per polygon right now.
  • Post problems in the discussion page, on 'my talk' page or just email me : dwkulp@mail.med.upenn.edu

EXAMPLES

import wfmesh
cd /home/tlinnet/Software/pymol/Pymol-script-repo/files_for_examples
wfmesh.createWFObj('torus.obj','Torus',flip=1)    # Flip = 1, if OBJ created by openFX, crossroads3D combination
wfmesh.createWFObj("torus.obj","Torus2",translate=[5,5,0], flip=1)
wfmesh.createWFObj("ship.obj","Ship")

REFERENCES

OpenFX Crossroads3D

ADDITIONAL RESOURCES

Torus.obj Torus.zip