Difference between revisions of "Script Tutorial"

From PyMOLWiki
Jump to navigation Jump to search
(remove duplicated content)
 
(14 intermediate revisions by 2 users not shown)
Line 1: Line 1:
= Introduction =
+
This page has been splitted into:
One of the more powerful features of PyMOL is that it supports Python scripting.  That gives you the power of using all the Python libraries.  You can even use the Python API to write programs in other languages and then send the results back into PyMOL (this is what [[cealign]] does).  The PyMOLWiki has a rather extensive [[script_library]] full of useful scripts (feel free to add your own).
 
 
 
= General Scripts =
 
Scripting follows a simple recipe, in PyMOL. 
 
 
 
To write them:
 
#Write the function, let's call it '''doSimpleThing''', in a Python file, let's call the file '''pyProgram.py'''.
 
#Add the following command to the end of the '''pyProgram.py''' file <source lang="python">cmd.extend(doSimpleThing,doSimpleThing)</source>
 
 
 
To use them:
 
# simply import the script into PyMOL: <source lang="python">run /home/userName/path/toscript/pyProgram.py</source>
 
 
 
That's it.  Your script can, through Python, import any modules you need and also edit modify objects in PyMOL.
 
 
 
== Getting PyMOL Data into your Script ==
 
To get PyMOL data into your script you will need to somehow get access to the PyMOL objects and pull out the data.  For example, if you want the atomic coordinates of a selection of alpha carbon atoms your Python function may do something like this (all PyMOL functions are referenced in the See Also section, below):
 
<source lang="python">
 
# Import PyMOL's stored module.  This will allow us with a
 
# way to pull out the PyMOL data and modify it in our script.
 
# See below.
 
from pymol import stored
 
 
 
def functionName( userSelection ):
 
    # this array will be used to hold the coordinates.  It
 
    # has access to PyMOL objects and, we have access to it.
 
    stored.alphaCabons = []
 
 
 
    # let's just get the alpha carbons, so make the
 
    # selection just for them
 
    userSelection = userSelection + " and n. CA"
 
 
 
    # iterate over state 1, or the userSelection -- this just means
 
    # for each item in the selection do what the next parameter says.
 
    # And, that is to append the (x,y,z) coordinates to the stored.alphaCarbon
 
    # array.
 
    cmd.iterate_state(1, selector.process(userSelection), "stored.alphaCarbons.append([x,y,z])")
 
 
 
    # stored.alphaCarbons now has the data you want.
 
 
 
    ... do something to your coordinates ...
 
</source>
 
 
 
=== Getting Data From your Script into PyMOL ===
 
Usually this step is easier.  To get your data into PyMOL, it's usually through modifying some object, rotating a molecule, for example.  To do that, you can use the [[alter]] or [[alter_state]] commands.  Let's say for example, that we have translated the molecular coordinates from the last example by some vector (we moved the alpha carbons).  Now, we want to make the change and see it in PyMOL.  To write the coordinates back we do:
 
<source lang="python">
 
# we need to know which PyMOL object to modify.  There could be many molecules and objects
 
# in the session, and we don't want to ruin them.  The following line, gets the object
 
# name from PyMOL
 
objName = cmd.identify(sel2,1)[0][0]
 
 
 
# Now, we alter each (x,y,z) array for the object, by popping out the values
 
# in stored.alphaCarbons.  PyMOL should now reflect the changed coordinates.
 
cmd.alter_state(1,objName,"(x,y,z)=stored.alphaCarbons.pop(0)")
 
</source>
 
 
 
== Example ==
 
Here's a script I wrote for [[cealign]].  It takes two selections '''of equal length''' and computes the optimal overlap, and aligns them.  This is [[Kabsch]].
 
 
 
<source lang="python">
 
def optAlign( sel1, sel2 ):
 
        """
 
        optAlign performs the Kabsch alignment algorithm upon the alpha-carbons of two selections.
 
        Example:  optAlign MOL1 and i. 20-40, MOL2 and i. 102-122
 
        Example 2: optAlign 1GGZ and i. 4-146 and n. CA, 1CLL and i. 4-146 and n. CA
 
 
 
        Two RMSDs are returned.  One comes from the Kabsch algorithm and the other from
 
        PyMol based upon your selections.
 
 
 
        By default, this program will optimally align the ALPHA CARBONS of the selections provided.
 
        To turn off this feature remove the lines between the commented "REMOVE ALPHA CARBONS" below.
 
 
 
        @param sel1: First PyMol selection with N-atoms
 
        @param sel2: Second PyMol selection with N-atoms
 
        """
 
 
 
        # make the lists for holding coordinates
 
        # partial lists
 
        stored.sel1 = []
 
        stored.sel2 = []
 
        # full lists
 
        stored.mol1 = []
 
        stored.mol2 = []
 
 
 
        # -- CUT HERE
 
        sel1 = sel1 + " and N. CA"
 
        sel2 = sel2 + " and N. CA"
 
        # -- CUT HERE
 
 
 
        # Get the selected coordinates.  We
 
        # align these coords.
 
        cmd.iterate_state(1, selector.process(sel1), "stored.sel1.append([x,y,z])")
 
        cmd.iterate_state(1, selector.process(sel2), "stored.sel2.append([x,y,z])")
 
 
 
        # get molecule name
 
        mol1 = cmd.identify(sel1,1)[0][0]
 
        mol2 = cmd.identify(sel2,1)[0][0]
 
 
 
        # Get all molecule coords.  We do this because
 
        # we have to rotate the whole molcule, not just
 
        # the aligned selection
 
        cmd.iterate_state(1, mol1, "stored.mol1.append([x,y,z])")
 
        cmd.iterate_state(1, mol2, "stored.mol2.append([x,y,z])")
 
 
 
        # check for consistency
 
        assert( len(stored.sel1) == len(stored.sel2))
 
        L = len(stored.sel1)
 
        assert( L > 0 )
 
 
 
        # must alway center the two proteins to avoid
 
        # affine transformations.  Center the two proteins
 
        # to their selections.
 
        COM1 = numpy.sum(stored.sel1,axis=0) / float(L)
 
        COM2 = numpy.sum(stored.sel2,axis=0) / float(L)
 
        stored.sel1 = stored.sel1 - COM1
 
        stored.sel2 = stored.sel2 - COM2
 
 
 
        # Initial residual, see Kabsch.
 
        E0 = numpy.sum( numpy.sum(stored.sel1 * stored.sel1,axis=0),axis=0) + numpy.sum( numpy.sum(stored.sel2 * stored.sel2,axis=0)
 
,axis=0)
 
 
 
        #
 
        # This beautiful step provides the answer.  V and Wt are the orthonormal
 
        # bases that when multiplied by each other give us the rotation matrix, U.
 
        # S, (Sigma, from SVD) provides us with the error!  Isn't SVD great!
 
      # HACK COMMENT:
 
        # Numpy has some strangeness with returning floats from
 
        # its calculation.  So, I made a rather silly work around,
 
        # but, it seems to work!  I cast the float to a string,
 
        # then back to a float; this works.  See below.
 
 
 
        # We already have our solution, in the results from SVD.
 
        # we just need to check for reflections and then produce
 
        # the rotation.  V and Wt are orthonormal, so their det's
 
        # are +/-1.0 (and thus products are +/- 1.0 ).
 
        reflect = float(str(float(numpy.linalg.det(V) * numpy.linalg.det(Wt))))
 
 
 
        if reflect == -1.0:
 
                S[-1] = -S[-1]
 
                V[:,-1] = -V[:,-1]
 
 
 
        RMSD = E0 - (2.0 * sum(S))
 
        RMSD = numpy.sqrt(abs(RMSD / L))
 
 
 
        #U is simply V*Wt
 
        U = numpy.dot(V, Wt)
 
 
 
        # rotate and translate the molecule
 
        stored.sel2 = numpy.dot((stored.mol2 - COM2), U) + COM1
 
        stored.sel2 = stored.sel2.tolist()
 
 
 
        # let PyMol know about the changes to the coordinates
 
        cmd.alter_state(1,mol2,"(x,y,z)=stored.sel2.pop(0)")
 
 
 
        print "RMSD=%f" % RMSD
 
 
 
        # make the alignment OBVIOUS
 
        # comment out below to leave molecule representation unchanged
 
        cmd.orient(sel1 + " and " + sel2)
 
 
 
cmd.extend("optAlign", optAlign)
 
</source>
 
 
 
= Advanced Scripts =
 
 
 
== Other Languages ==
 
Python is a great language, but sometimes we have libraries built in other languages, or Python's math is just too slow to be useful.  So, we typically export our PyMOL data to the other language, do the math/problem, and import the changes back into PyMOL.  This is shown below using the Python API and C.  (This code comes from [[cealign]].)
 
 
 
This is more advanced scripting, and requires some knowledge of the Python API.
 
 
 
 
 
=== Getting Your Data From Python/PyMOL into C ===
 
=== Getting Your Data from C back into Python/PyMOL ===
 
 
 
 
 
==== Notes ====
 
I'll finish this soon.
 
[[User:Inchoate|Tree]]
 
 
 
== Example ==
 
See the source code for [[cealign]].
 
 
 
  
 +
* [[Simple Scripting]]
 +
* [[Advanced Scripting]]
  
 
== See Also ==
 
== See Also ==
[[stored]], [[iterate_state]], [[identify]].
 
 
 
 
 
 
 
 
  
[[Category:Development|Script_Tutorial]]
+
* [[:Category:Scripting]]
 +
* [[:Category:Development]]

Latest revision as of 11:29, 29 May 2011