From PyMOLWiki
Revision as of 05:29, 30 June 2010 by Speleo3 (talk | contribs) (support multiple chains and proline)
Jump to: navigation, search

This script will draw a CGO plane between the backbone atoms of two neighboring residues. This is to show the planarity of the atoms. The image style this is meant to represent can be found many places, like "Introduction to Protein Structure" by Branden and Tooze (2nd ed. pp. 8).


# download the source and save as
fetch 1cll
# make planes for residues 4-9
bbPlane i. 4-10

The Source

# -- - draws a CGO plane across the backbone atoms of
#                 neighboring amino acids
# Author: Jason Vertrees, 06/2010
# Copyright (C) Schrodinger
# Open Source License: MIT
from pymol.cgo import *    # get constants
from pymol import cmd, stored
from chempy import cpv

def bbPlane(objSel='(all)', color='white', transp=0.0):
    Draws a plane across the backbone for a selection

        (object or selection) protein object or selection

    color = string: color name or number {default: white}

    transp = float: transparency component (0.0--1.0) {default: 0.0}

    A new object representing the planes

    * You need to pass in an object or selection with at least two
    amino acids.  The plane spans CA_i, O_i, N-H_(i+1), and CA_(i+1)

    * Avoid two-sided lighting until I rearrange the vertices

    # format input
    transp = float(transp)
    stored.AAs = []

    # need hydrogens
    # get the list of residue ids
    for obj in cmd.get_object_list(objSel):
        cmd.iterate( obj + " and (" + objSel + ") and n. CA" , "stored.AAs.append('/"+obj+"/%s/%s/%s' % (segi,chain,resi))")

    # need at least two amino acids
    if len(stored.AAs) <= 1:
        print "ERROR: Please provide at least two amino acids, the alpha-carbon on the 2nd is needed."

    # prepare the cgo
    obj = [

    for res in range(0, len(stored.AAs)-1):
        curIdx, nextIdx = str(stored.AAs[res]), str(stored.AAs[res+1])

        corners = [
            curIdx + "/CA",
            curIdx + "/O",
            nextIdx + "/N extend 1 and e. H",
            nextIdx + "/CA"

        # prolines
        if cmd.count_atoms( "%s and resn PRO" % nextIdx ):
            corners[2] = nextIdx + "/CD"

        # if the data are incomplete for any residues, ignore
        if map(cmd.count_atoms, corners) != [1,1,1,1]:
            print 'peptide bond %s -> %s incomplete' % (curIdx, nextIdx)

        # populate the position array
        pos = map(cmd.get_atom_coords, corners)

        if cpv.distance(pos[0], pos[3]) > 4.0:
            print '%s and %s not adjacent' % (curIdx, nextIdx)

        # fill in the vertex data for the triangles; 
        # two-sided lighting is an issue
        obj.extend( [
            VERTEX, pos[0][0], pos[0][1], pos[0][2],
            VERTEX, pos[1][0], pos[1][1], pos[1][2],
            VERTEX, pos[2][0], pos[2][1], pos[2][2],

            VERTEX, pos[1][0], pos[1][1], pos[1][2],
            VERTEX, pos[2][0], pos[2][1], pos[2][2],            
            VERTEX, pos[3][0], pos[3][1], pos[3][2],

    # finish the CGO

    # update the UI
    newName =  cmd.get_unused_name("backbonePlane")
    cmd.load_cgo(obj, newName)
    cmd.set("cgo_transparency", transp, newName)

cmd.extend("bbPlane", bbPlane)