Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help
Special pages
SBGrid Resources
SBGrid Consortium
SBGrid Data Bank
Software Webinars
PyMOL Webinar
PyMOL Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
GLSL Shaders
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== GLSL Toon Spheres == === Sphere Fragment Shader Code === Rename the "sphere.fs" file in your PyMOL shaders directory to "sphere.fs.bak" then copy and save the following into a new file called "sphere.fs" (using a text editor) in the same directory: <source lang="python"> // Sphere impostor fragment shader // Sphere Toon Shading code modifications by Shivender Shandilya, 2012 uniform bool lighting_enabled; uniform float ortho; uniform float fog_enabled; uniform bool bg_gradient; uniform vec3 fog_color_top; uniform vec3 fog_color_bottom; uniform float inv_height; uniform int light_count; uniform float shininess; uniform float shininess_0; uniform int spec_count; uniform float spec_value; uniform float spec_value_0; uniform int stereo_flag; uniform mat3 matL; uniform mat3 matR; uniform float gamma; varying vec4 COLOR; varying vec3 sphere_center; varying float radius2; varying vec3 point; // varying fog; vec4 ComputeColorForLight(vec3 N, vec3 L, vec3 H, vec4 ambient, vec4 diffuse, float spec, float shine){ float NdotL, NdotH; vec4 ret_val = vec4(0.); // // Begin code for calculating the Sphere Outline // float spheredge = dot(N,L); float edgeweight = 1.025; float edgegain = 16.0; spheredge = edgeweight - (spheredge * spheredge); spheredge = 1.0 - pow(spheredge, shine * edgegain); diffuse = mix(diffuse, diffuse * spheredge, shine); ret_val += diffuse * COLOR; NdotL = dot(N, L); if (NdotL > 0.0) { ret_val += diffuse * NdotL * COLOR; NdotH = max(dot(N, H), 0.0); ret_val += spec * pow(NdotH, shine); } return ret_val; } void main(void) { vec3 ray_origin = mix(vec3(0.,0.,0.), point, ortho); vec3 ray_direction = mix(normalize(point), vec3(0., 0., 1.), ortho); vec3 sphere_direction = mix(sphere_center, ray_origin - sphere_center, ortho); // Calculate sphere-ray intersection float b = dot(sphere_direction, ray_direction); float position = b * b + radius2 - dot(sphere_direction, sphere_direction); // Check if the ray missed the sphere if (position < 0.0) discard; // Calculate nearest point of intersection float nearest = mix(b - sqrt(position), sqrt(position) - b, ortho); // Calculate intersection point on the sphere surface. The ray // origin is at the quad (center point), so we need to project // back towards the user to get the front face. vec3 ipoint = nearest * ray_direction + ray_origin; // Calculate normal at the intersection point vec3 N = normalize(ipoint - sphere_center); // Calculate depth in clipping space vec2 clipZW = ipoint.z * gl_ProjectionMatrix[2].zw + gl_ProjectionMatrix[3].zw; float depth = 0.5 + 0.5 * clipZW.x / clipZW.y; // this is a workaround necessary for Mac // otherwise the modified fragment wont clip properly if (depth <= 0.0) discard; if (depth >= 1.0) discard; if (COLOR.a <= 1.0) gl_FragDepth = depth; else gl_FragDepth = 1.0; vec4 color; vec3 L0 = normalize(vec3(gl_LightSource[0].position) - ipoint); float NdotL = max(dot(N, L0), 0.0); float NdotH; vec4 final_color = gl_LightModel.ambient * COLOR; /* if (light_count>0){ final_color += ComputeColorForLight(N, normalize(vec3(gl_LightSource[0].position)), normalize(vec3(gl_LightSource[0].halfVector.xyz)), gl_LightSource[0].ambient, gl_LightSource[0].diffuse, spec_value_0, shininess_0); if (light_count>1){ final_color += ComputeColorForLight(N, normalize(vec3(gl_LightSource[1].position)), normalize(vec3(gl_LightSource[1].halfVector.xyz)), gl_LightSource[1].ambient, gl_LightSource[1].diffuse, spec_value, shininess); if (light_count>2){ final_color += ComputeColorForLight(N, normalize(vec3(gl_LightSource[2].position)), normalize(vec3(gl_LightSource[2].halfVector.xyz)), gl_LightSource[2].ambient, gl_LightSource[2].diffuse, spec_value, shininess); if (light_count>3){ final_color += ComputeColorForLight(N, normalize(vec3(gl_LightSource[3].position)), normalize(vec3(gl_LightSource[3].halfVector.xyz)), gl_LightSource[3].ambient, gl_LightSource[3].diffuse, spec_value, shininess); if (light_count>4){ final_color += ComputeColorForLight(N, normalize(vec3(gl_LightSource[4].position)), normalize(vec3(gl_LightSource[4].halfVector.xyz)), gl_LightSource[4].ambient, gl_LightSource[4].diffuse, spec_value, shininess); if (light_count>5){ final_color += ComputeColorForLight(N, normalize(vec3(gl_LightSource[5].position)), normalize(vec3(gl_LightSource[5].halfVector.xyz)), gl_LightSource[5].ambient, gl_LightSource[5].diffuse, spec_value, shininess); if (light_count>6){ final_color += ComputeColorForLight(N, normalize(vec3(gl_LightSource[6].position)), normalize(vec3(gl_LightSource[6].halfVector.xyz)), gl_LightSource[6].ambient, gl_LightSource[6].diffuse, spec_value, shininess); if (light_count>7){ final_color += ComputeColorForLight(N, normalize(vec3(gl_LightSource[7].position)), normalize(vec3(gl_LightSource[7].halfVector.xyz)), gl_LightSource[7].ambient, gl_LightSource[7].diffuse, spec_value, shininess); }}}}}}}} */ int i; for (i=0; i<light_count; i++){ vec3 L = normalize(gl_LightSource[i].position.xyz); vec3 H = normalize(gl_LightSource[i].halfVector.xyz); float spec = 0., shine = 0.; if (i==0){ spec = spec_value_0; shine = shininess_0; } else if (spec_count >= i){ spec = spec_value; shine = shininess; } // final_color += gl_LightSource[i].ambient * COLOR; final_color += ComputeColorForLight(N, normalize(vec3(gl_LightSource[i].position)), normalize(vec3(gl_LightSource[i].halfVector.xyz)), gl_LightSource[i].ambient * COLOR, gl_LightSource[i].diffuse * COLOR, spec, shine); NdotL = dot(N, L); if (NdotL > 0.0) { // final_color += gl_LightSource[i].diffuse * NdotL * COLOR; final_color += ComputeColorForLight(N, normalize(vec3(gl_LightSource[i].position)), normalize(vec3(gl_LightSource[i].halfVector.xyz)), gl_LightSource[i].ambient * COLOR, gl_LightSource[i].diffuse * COLOR * NdotL * 0.333, spec, shine); } NdotH = max(dot(N, H), 0.0); final_color += spec * pow(NdotH, shine); } float fog = clamp((gl_Fog.end + ipoint.z) * gl_Fog.scale, 0.0, 1.0); fog = mix(1.0, fog, fog_enabled); vec3 fog_color; if (bg_gradient){ fog_color = mix(fog_color_bottom, fog_color_top, gl_FragCoord.y * inv_height); } else { fog_color = fog_color_top; } final_color.rgb = mix(fog_color, final_color.rgb, fog); vec4 f = vec4(final_color.rgb, COLOR.a); // // Fake shadows based on depth // // vec4 f = vec4(final_color.rgb * ( 1.05 - gl_FragDepth), COLOR.a); if(stereo_flag==-1) gl_FragColor = vec4(matL * pow(f.rgb,vec3(gamma,gamma,gamma)), f.a); else if (stereo_flag==0) gl_FragColor = f; else if (stereo_flag==1) gl_FragColor = vec4(matR * pow(f.rgb, vec3(gamma,gamma,gamma)), f.a); } </source> === Sphere Testing PyMOL Script === Now test out the sphere shader by saving the following PyMOL script as "test1.pml" and running it from the "File > Run" menu: <br />(If File > Run does not work for you, try typing in "@test1.pml" on the PyMOL command line. First make sure to "cd" on the PyMOL command line to the directory where you saved test1.pml) <source lang="python"> fetch 3V4K, async=0 show sphere, all select solv, solvent remove solv delete solv remove e. H set sphere_mode, 9 set ambient, 0.25 set_color carbons, [100, 225,90] set_color others, [75, 100, 230] util.cbaw 3V4K set sphere_scale, 1.05 set orthoscopic, 1 set_view (\ -0.327029049, -0.944887519, 0.015455140,\ 0.943798959, -0.327394068, -0.045230716,\ 0.047797613, -0.000204348, 0.998857021,\ 0.000143192, -0.000024423, -184.973327637,\ -14.873787880, -17.664234161, 35.063804626,\ 136.028396606, 233.926559448, 20.000000000 ) cmd.set('light_count',9) cmd.set("light" ,"[-0.2,-0.2,-1.0]") cmd.set("light2","[-0.2, 0.0,-1.0]") cmd.set("light3","[-0.2, 0.2,-1.0]") cmd.set("light4","[ 0.0, 0.2,-1.0]") cmd.set("light5","[ 0.2, 0.2,-1.0]") cmd.set("light6","[ 0.2, 0.0,-1.0]") cmd.set("light7","[ 0.2,-0.2,-1.0]") cmd.set("light8","[ 0.0,-0.2,-1.0]") cmd.set("light9","[ 0.0,-0.2,-1.0]") cmd.set('ambient',0.15) cmd.set('direct',0.10) cmd.set('reflect',0.80) cmd.set('shininess',10) cmd.set('spec_count',-1) cmd.set('power',1.0) cmd.set('specular_intensity',0) cmd.set('spec_direct',0.0) cmd.set('ray_shadow_decay_factor',0.1) cmd.set('ray_shadow_decay_range',5.0) cmd.set('bg_rgb',[1.0, 1.0, 1.0]) viewport 1024, 768 draw 1024, 768, 8 </source>
Summary:
Please note that all contributions to PyMOL Wiki are considered to be released under the GNU Free Documentation License 1.2 (see
PyMOL Wiki:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
GLSL Shaders
(section)
Add topic